高级检索
叶淞玮, 杨尊先, 郭太良. 基于Sn-MOF组装的 C/SnS/MoS2纳米管及其锂离子电池性能研究[J]. 真空科学与技术学报, 2024, 44(4): 341-349. DOI: 10.13922/j.cnki.cjvst.202401015
引用本文: 叶淞玮, 杨尊先, 郭太良. 基于Sn-MOF组装的 C/SnS/MoS2纳米管及其锂离子电池性能研究[J]. 真空科学与技术学报, 2024, 44(4): 341-349. DOI: 10.13922/j.cnki.cjvst.202401015
YE Songwei, YANG Zunxian, GUO Tailiang. Lithium-Ion Batteries Properties of C/SnS/MoS2 Hierarchical Nanotubes Constructed from Tin-Based MOF[J]. CHINESE JOURNAL VACUUM SCIENCE AND TECHNOLOGY, 2024, 44(4): 341-349. DOI: 10.13922/j.cnki.cjvst.202401015
Citation: YE Songwei, YANG Zunxian, GUO Tailiang. Lithium-Ion Batteries Properties of C/SnS/MoS2 Hierarchical Nanotubes Constructed from Tin-Based MOF[J]. CHINESE JOURNAL VACUUM SCIENCE AND TECHNOLOGY, 2024, 44(4): 341-349. DOI: 10.13922/j.cnki.cjvst.202401015

基于Sn-MOF组装的 C/SnS/MoS2纳米管及其锂离子电池性能研究

Lithium-Ion Batteries Properties of C/SnS/MoS2 Hierarchical Nanotubes Constructed from Tin-Based MOF

  • 摘要: 二硫化钼(MoS2)以高理论容量(662 mAhg−1)和较大层间距(0.62 nm)一直是锂离子电池负极材料的研究热点。然而,由于MoS2的固有电子/离子导电率差且充放电循环过程中电极材料的体积变化严重,导致MoS2的比容量迅速衰减,阻碍了MoS2材料作为电池电极。在这项工作中,设计并合成了一种新型的C/SnS/MoS2纳米管。具体来说,将Sn以Sn-MOF的形态包覆在一维的MoO3纳米带上,然后硫化得到保留了表面纳米片结构的C/SnS/MoS2纳米管。这种制备方法不仅保留了表面的纳米片结构,也在表面留下来一层薄薄的非晶碳。得益于优越的结构设计,且SnS与 MoS2存在着协同作用,这不仅提高了导电性,并且也提升了电池循环的稳定性。做为电极材料时,复合材料能够在0.1 Ag−1电流密度下80次循环后还保持着1110.2 mAhg−1的放电比容量,在2 Ag−1大电流密度下860次循环后保持801.7 mAhg−1的放电比容量。

     

    Abstract: Molybdenum disulfide (MoS2) has been the focus of research on anode materials for lithium-ion batteries with its high theoretical capacity (662 mAhg−1) and large layer spacing (0.62 nm). However, due to the poor inherent electronic/ionic conductivity of MoS2 and the serious change in the volume of the electrode material during the charge-discharge cycle, the specific capacity of MoS2 rapidly decays, hindering the MoS2 material as a battery electrode. In this work, a novel C/SnS/MoS2 nanotube was designed and synthesized. Specifically, Sn was coated with Sn-MOF on one-dimensional MoO3 nanoribbons, and then vulcanized to obtain C/SnS/MoS2 nanotubes that retained the surface nanosheet structure. This preparation method not only retains the nanosheet structure of the surface but also leaves a thin layer of amorphous carbon on the surface. Thanks to the superior structural design, there is a synergy between SnS and MoS2, which not only improves the conductivity but also improves the stability of the battery cycle. When used as electrode material, the composite can maintain 1110.2 mAhg−1 discharge specific capacity after 80 cycles at 0.1 Ag−1 current density and 801.7 mAhg−1 discharge specific capacity after 860 cycles at 2 Ag−1 high current density.

     

/

返回文章
返回