高级检索
杨锴, Andreas Heinrich, Christopher Lutz. 基于扫描隧道显微镜的单原子自旋共振技术[J]. 真空科学与技术学报, 2021, 41(10): 897-912. DOI: 10.13922/j.cnki.cjvst.202107007
引用本文: 杨锴, Andreas Heinrich, Christopher Lutz. 基于扫描隧道显微镜的单原子自旋共振技术[J]. 真空科学与技术学报, 2021, 41(10): 897-912. DOI: 10.13922/j.cnki.cjvst.202107007
YANG Kai, HEINRICH Andreas, LUTZ Christopher. Single-Atom Spin Resonance in a Scanning Tunneling Microscope[J]. CHINESE JOURNAL VACUUM SCIENCE AND TECHNOLOGY, 2021, 41(10): 897-912. DOI: 10.13922/j.cnki.cjvst.202107007
Citation: YANG Kai, HEINRICH Andreas, LUTZ Christopher. Single-Atom Spin Resonance in a Scanning Tunneling Microscope[J]. CHINESE JOURNAL VACUUM SCIENCE AND TECHNOLOGY, 2021, 41(10): 897-912. DOI: 10.13922/j.cnki.cjvst.202107007

基于扫描隧道显微镜的单原子自旋共振技术

Single-Atom Spin Resonance in a Scanning Tunneling Microscope

  • 摘要: 近年来,应用扫描隧道显微镜技术已经可以测量单个原子的电子自旋共振谱线,为实现原子尺度量子磁性的探测与操控迈出了重要一步。电子自旋共振扫描隧道显微镜具有原子分辨能力和几十个纳电子伏的超高能量分辨率,可以实现微弱信号的原子尺度探测,例如可以测量固体表面相距几纳米的两个原子之间的微弱磁偶极相互作用、单个原子的电子与核自旋之间的超精细相互作用,以及人工自旋阵列的量子涨落等。借助脉冲式电子自旋共振技术,可以进一步实现固体表面单个磁性原子以及耦合原子的量子相干操控,测量其拉比振荡、拉姆齐干涉条纹和自旋回波信号等。单原子脉冲式电子自旋共振的实现为应用单原子量子探针进行量子探测奠定了重要基础。另外,对具有原子级精度的人工自旋结构的量子相干操控,为多体系统的量子模拟提供了重要的固态实验平台。

     

    Abstract: Recently,the ability to drive electron spin resonance (ESR) of individual atoms using a scanning tunneling microscope (STM) provided a major step forward in sensing and manipulating magnetism at the atomic scale. The atomic-scale spatial resolution and the ultrahigh energy resolution of ESR-STM has allowed the measurement of the magnetic dipolar interaction between two atoms placed a few nanometers apart on a surface,the detection of hyperfine interaction between electronic and nuclear spins of individual atoms,as well as the exploration of quantum fluctuations in designed spin arrays having tailored geometries. By implementing pulsed ESR,coherent spin manipulation of magnetic atoms and engineered atomic dimers on surfaces have been achieved by demonstrating Rabi oscillations,Ramsey fringes and spin echoes,opening the door to a powerful suite of pulsed techniques that can extend single-atom sensing capabilities. Coherent control of spins arranged with atomic precision provides a solid-state platform for quantum simulation of many-body systems.

     

/

返回文章
返回