高级检索

CFEDR ICRH天线窗口插件结构设计和热流分析

Structural Design and Thermal Flow Analysis of The CFEDR Ion Cyclotron Antenna Port Plug

  • 摘要: 中国聚变工程示范堆(China Fusion Engineering Demonstration Reactor,简称CFEDR)主要的目标是完成从国际热核聚变实验堆(International Thermonuclear Experimental Reactor,简称ITER)到聚变原型电站之间的技术过渡和工业实践,演示聚变能持续大功率、安全和稳定运行的可行性。离子回旋共振加热是CFEDR重要的辅助加热手段之一,CFEDR的Conventional-H模运行,计划需要20 MW的ICRH功率。天线系统将通过一个中窗口插件馈入20 MW的功率,窗口插件是天线系统的一个重要组成部分。为了满足天线高功率、长脉冲运行,天线窗口插件需要进行主动冷却和高真空密封,确保系统安全可靠运行。本研究基于离子回旋系统天线窗口插件的结构功能需求与冷却回路设计约束,提出了一种兼顾结构可靠性与加工可行性的新型冷却结构方案。利用ANSYS Fluent软件的流-热耦合数值模拟,系统分析了窗口插件的冷却回路的流动特性与散热效能,获得了以下主要结果:(1)流速呈现“收缩段加速(峰值16.7 m/s)−铣槽区缓流(90%区域<1.5 m/s)”的协同分布,实现高热区强制散热与低流动阻力的平衡;(2)压力梯度验证了流道结构合理性,进口压力9.06 MPa、沿程压降5.06 MPa,满足设计约束压差小于6 MPa的要求;(3)温度场表明流体出口温度105℃、温升35℃,低于50℃阈值,面板温差564℃,符合650℃阈值要求。模拟结果证实冷却回路满足热−流设计目标。本研究为中国聚变工程示范堆离子回旋系统天线窗口插件的工程设计提供了重要的理论依据。

     

    Abstract: The primary objective of China Fusion Engineering Demonstration Reactor (CFEDR) is to bridge the technical and industrial transition from the International Thermonuclear Experimental Reactor (ITER) to prototype fusion power plants, demonstrating the feasibility of sustained high-power, safe, and stable fusion energy operation. As one of CFEDR's crucial auxiliary heating methods, the Ion Cyclotron Resonance Heating (ICRH) system requires 20 MW power input for Conventional-H mode operation. The antenna system will feed 20 MW of power through a mid-port plug-in, which constitutes a vital component of the antenna system. To meet the demands of high-power, long-pulse operation, the Port Plug necessitates active cooling and high-vacuum sealing to ensure system reliability and safety. This study proposes a novel cooling structure design that balances structural integrity with manufacturing feasibility, based on the functional requirements and cooling circuit constraints of the ICRH antenna Port Plug. Through fluid-thermal coupled numerical simulations using ANSYS Fluent, we systematically analyzed the flow characteristics and cooling performance of the Port Plug's cooling circuit. Key findings include: (1) Velocity distribution demonstrates synergistic “acceleration in contraction zone (peak 16.7 m/s) - moderated flow in milled channels (90% area <1.5 m/s)”, achieving optimal balance between high-heat zone cooling and low flow resistance; (2) Pressure gradient analysis validates channel design rationality, with inlet pressure of 9.06 MPa and total pressure drop of 5.06 MPa, meeting the <6 MPa design constraint; (3) Temperature field analysis shows fluid outlet temperature of 105℃ (ΔT=35℃) below 50℃ threshold, and panel temperature difference of 564℃ within 650℃ limit. The simulation results confirm that the cooling circuit satisfies both thermal and hydraulic design requirements. This research provides essential theoretical foundations for the engineering design of the ICRH antenna Port Plug in CFEDR.

     

/

返回文章
返回