高级检索

基于DSMC方法的热裂解原子氢源数值仿真

DSMC-simulation of the Thermal Hydrogen Atom source

  • 摘要: 热裂解原子氢源在材料处理与半导体工艺中至关重要,其核心是通过高温催化裂解氢分子(H2)生成原子氢(H)。针对裂解腔内过渡流/分子流态下连续介质假设不再适用的情况下,本研究基于直接模拟蒙特卡罗方法,结合微观反应概率公式,在OpenFOAM平台构建催化裂解壁面反应模型,揭示热钨丝表面氢分子裂解机制及流场分布特性。仿真结果显示,当灯丝温度为 2500 K、氢气流量0.176 sccm时,裂解效率可达28%,而流量增至1.056 sccm时裂解效率降至约12 %;且裂解效率随灯丝温度升高呈指数增长,随流量增大显著下降。同时,通Cercignani–Lampis–Lord (CLL)模型分析发现,裂解效率主要由切向容纳系数调控,法向容纳系数影响极小;氢分子与氢原子在速度、密度分布上存在显著差异,入口狭缝可有效抑制氢原子返流。上述结果验证了Direct Simulation Monte Carlo (DSMC)方法在热裂解氢原子源模拟中的适用性与模型有效性,为原子氢源裂解工艺优化及结构设计提供关键参考。

     

    Abstract: The thermal hydrogen atom source is crucial in material processing and semiconductor technology. Its core principle is to generate atomic hydrogen (H) through the catalytic cracking of hydrogen molecules (H2) at high temperatures. Considering that the continuum hypothesis is no longer applicable under the transitional flow or molecular flow regime in the cracking chamber, this study constructs a catalytic cracking wall reaction model on the OpenFOAM platform. By integrating the Direct Simulation Monte Carlo (DSMC) method with the microscopic reaction probability formula, we reveal the cracking mechanism of hydrogen molecules on the surface of the hot tungsten filament and the characteristics of the flow-field distribution. The simulation results show that at a filament temperature of 2500 K and hydrogen flow rate of 0.176 sccm, the cracking efficiency reaches 28%, which drops to about 12% when the flow rate increases to 1.056 sccm. The cracking efficiency grows exponentially with higher filament temperature but decreases significantly with increased flow rate. Cercignani–Lampis–Lord (CLL) model analysis reveals it is mainly regulated by the tangential accommodation coefficient (negligible impact from the normal one). H2 and H atoms differ notably in velocity and density distribution, and the inlet slit effectively suppresses H atom backflow.These results confirm the DSMC method applicability and the model effectiveness, providing key references for optimizing hydrogen atom source cracking processes and structure.

     

/

返回文章
返回