高级检索

MAED-CNN:一种原子尺度图像降噪的深度学习模型

MAED-CNN: A Deep Learning Model for Atomic-Scale Image Denoising

  • 摘要: 工作在超高真空环境下的扫描隧道显微镜(STM)具备原子级分辨率,广泛应用于材料表面结构的精细成像。然而,STM图像易受机械振动、电子噪声、环境扰动等多种因素影响,导致图像质量下降,严重制约其科学研究价值。为提升STM图像的可用性和精度,本文提出一种基于多尺度特征提取与注意力机制的深度学习图像修复模型——MAED-CNN。该模型采用U-Net编码−解码结构,融合多尺度卷积模块与通道注意力机制,并引入人工修复图像作为监督参考,有效增强对图像局部细节与全局结构的重构能力。在多个真实STM图像数据集上进行测试,MAED-CNN在PSNR、SSIM、UQI等评价指标上均优于现有主流图像修复模型,表现出更高的图像还原精度与稳定性。本研究为STM图像智能修复提供了新思路,对提升纳米尺度成像技术的应用水平具有重要意义。

     

    Abstract: The Scanning Tunneling Microscope (STM), operating under ultra-high vacuum conditions, enables atomic-scale resolution imaging of material surfaces. However, STM images are often affected by various sources of noise, which degrades image quality. This paper proposes a deep learning model for STM image restoration, named MAED-CNN - Multi-scale Attention Encoder-Decoder Convolutional Neural Network. It uses artificially repaired STM images as references. The model leverages manually restored STM images as references and combines multi-scale convolution, attention modules, and an encoder-decoder U-Net architecture to transform noisy input images into high-quality, denoised outputs. Compared with several general deep learning models, the proposed model demonstrates superior performance in metrics such as PSNR, SSIM, and UQI. It effectively restores STM images and holds significant promise for advancing STM image restoration techniques and promoting research in imaging technologies.

     

/

返回文章
返回