高级检索

微波远程等离子源腔壁仿真与实验研究

Simulation and Experimental Research on the Plasma Chamber of Microwave Remote Plasma Source

  • 摘要: 微波远程等离子源在远离工艺腔的谐振腔内利用微波能量激发等离子体,展现出无电极污染、减轻其他活性粒子对材料表面轰击等独特优势,因此在半导体行业、薄膜沉积等工业领域得到了广泛应用。对微波远程等离子源的仿真模拟以及参数优化通常是基于等离子体生成前的电场。本文以放电管厚度参数为例,提出了一种基于点火和工作状态下微波远程等离子源腔壁电场仿真的参数优化方法,为了量化电场分布合理性,我们采用了多种性能指标,包括关键部件的电场模极值、电场模平均值,以及这些值与激发等离子体区域电场模平均值的比值,最终确定5 mm为该结构放电管的最优厚度。为进一步验证仿真结果的准确性,我们开展了不同厚度放电管的等离子体生成实验,结果显示等离子体发光区的个数和分布与仿真预测高度一致,从而充分证明了本文所采用仿真方法的可靠性与准确性。本文使用的仿真方法和性能评估方法可推广至微波远程等离子源其他参数的设计优化中。

     

    Abstract: Microwave remote plasma sources (RPS) leverage microwave energy within a resonant cavity to ignite plasma, which is separated from the process chamber, and exhibit distinct advantages, such as no electrode contamination and mitigating material surface bombardment by reactive particles. As a result, they are widely utilized in industries, including semiconductors and thin-film deposition. Traditional simulation and parameter optimization of the RPS focuses on modeling the electric field without plasma. This study proposes a parameter optimization approach for microwave RPS, exemplified by the discharge tube thickness, based on electric field simulations under ignition and operational conditions. To quantify the electric field distribution, multiple metrics are employed, drawing the conclusion that the optimal thickness is 5mm. Experimental validation with discharge tubes of various thicknesses further confirms the high consistency between the observed plasma luminous regions and simulation predictions, demonstrating the reliability and accuracy of the simulation method. The simulation and performance evaluation methodologies presented in this paper can be generalized for the design optimization of other parameters.

     

/

返回文章
返回