高级检索

基于有限元分析与声学实验的夹管式真空界面阀气动噪声特性研究

The Aerodynamic Noise Characteristics of Vacuum Interface Valves Based on Finite Element Analysis and Acoustic Experiments

  • 摘要: 气动噪声是真空界面阀在真空排污系统运行中面临的一个关键问题,在公共场所噪声显著影响用户体验,减少真空界面阀工作时的气动噪声尤为重要。本文围绕自主设计的夹管式真空界面阀,采用有限元分析(FEA)方法与声学实验相结合的方式,全面探究了阀门在不同开度、压强和结构条件下的噪声特性。有限元分析采用Proudman宽频噪声预测模型及ANSYS Fluent中的FW-H方程求解器实现Lighthill声类比,实验验证通过自制测试平台、噪声传感器以及LabVIEW数据采集软件完成。研究结果表明,阀门开度从20%增至100%时,涡流结构改变使噪声降低达10.4%;压强在0.035 MPa至0.065 MPa递增过程中,各频率端声压级随涡流增强而升高;阀芯水平端面距离从33 mm扩至50.5 mm,噪声降低幅度达5.1%。仿真计算与实验测试结果高度契合,有力地证明了噪声有限元分析方法的准确性与可靠性,为夹管式真空界面阀的噪声控制提供了有力的理论依据,并为类似阀门的噪声控制提供了有益的参考。

     

    Abstract: Aerodynamic noise constitutes a critical challenge in vacuum interface valves operating within vacuum drainage systems, particularly in public facilities where excessive noise levels significantly compromise user comfort, necessitating effective noise mitigation strategies. This study focuses on a self-developed pinch-type vacuum interface valve, employing a hybrid methodology that integrates finite element analysis (FEA) with acoustic experimentation to systematically investigate noise generation mechanisms under varying operational parameters (valve opening degree, pressure differentials, and structural configurations). The numerical framework incorporates Proudman's broadband noise prediction model coupled with the FW-H equations solver in ANSYS Fluent to implement Lighthill's acoustic analogy. Experimental validation was achieved through a custom-built testing platform equipped with precision acoustic sensors and a LabVIEW-based data acquisition system. Key findings demonstrate: A 10.4% noise reduction occurs when valve opening increases from 20% to full aperture, attributed to the modification of vortex structures; pressure escalation from 0.035 MPa to 0.065 MPa induces monotonic elevation of sound pressure levels (SPL) across all frequency bands with vortical intensity augmentation; expanding the spool's horizontal end face distance from 33 mm to 50.5 mm achieves 5.1% noise attenuation. The strong concordance between simulation and experimental results validates the numerical model's accuracy and reliability, establishing a theoretical foundation for noise optimization in pinch-type vacuum interface valves while providing valuable insights for aeroacoustic control in analogous valve architectures.

     

/

返回文章
返回