高级检索
黄小军, 赵杰. 近地空间电推进系统仿真与实验的协同优化研究[J]. 真空科学与技术学报. DOI: 10.13922/j.cnki.cjvst.202404009
引用本文: 黄小军, 赵杰. 近地空间电推进系统仿真与实验的协同优化研究[J]. 真空科学与技术学报. DOI: 10.13922/j.cnki.cjvst.202404009
HUANG Xiaojun, ZHAO Jie. Collaborative Optimization Research on Simulation and Experiment of Electric Propulsion System under Atmospheric Pressure[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY. DOI: 10.13922/j.cnki.cjvst.202404009
Citation: HUANG Xiaojun, ZHAO Jie. Collaborative Optimization Research on Simulation and Experiment of Electric Propulsion System under Atmospheric Pressure[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY. DOI: 10.13922/j.cnki.cjvst.202404009

近地空间电推进系统仿真与实验的协同优化研究

Collaborative Optimization Research on Simulation and Experiment of Electric Propulsion System under Atmospheric Pressure

  • 摘要: 电推进是一种将电能直接转化为推力的新型技术。由于其低功耗、低噪声、无机械运动部件等优点,在近地空间航空领域中备受关注。为了提供优化策略,通过数值模拟计算构建了“针−环”电推进系统,研究了不同放电电压、电极间距和下电极偏转角度下对电推进系统产生的风速大小的影响。结果表明:施加在上电极处的电压越大,电晕区越大,产生的离子流速度也越大;减小下电极偏转角会使离子流引起的交汇角减小。改变下电极偏转角是降低轴线离子流速度变化率的最佳选择;减小电极间距可以增大离子流径向速度的大小。

     

    Abstract: Ion flow propulsion technology is a novel electric propulsion technique that directly converts electrical energy into thrust. Owing to its advantages, including low power consumption, minimal noise, and the absence of mechanical moving parts, it has garnered significant attention in the aerospace industry. To develop optimization strategies, a "needle-ring" electric propulsion system was modeled using the finite element software COMSOL Multiphysics. The study investigated the impact of varying discharge voltages, electrode spacings, and lower electrode deflection angles on the ion flow velocity produced by the electric propulsion system under atmospheric conditions. The findings indicate that the higher the voltage applied to the upper electrode, the larger the corona region and the greater the ion flow velocity; reducing the lower electrode's deflection angle diminishes the angle of intersection created by the ion flow. Adjusting the lower electrode's deflection angle is optimal for minimizing the rate of change in axial ion flow velocity; narrowing the electrode spacing enhances the magnitude of the ion flow's radial velocity.

     

/

返回文章
返回