高级检索

真空纳米二极管和三极管综述

Reviews on Vacuum Nano-Diodes and Nano-Triodes

  • 摘要: 真空纳米二极管和真空纳米三极管具有与传统真空管相似的基本功能,但却可以通过现有先进的微加工工艺线制造,以实现尺寸小、重量轻和高度集成,这使得它们在最近十年发展迅速。综述了真空纳米二极管和三极管的起源、发展历史和最新技术状态。介绍了典型的横向结构、垂直结构和环栅结构器件,并分析了各自优缺点。硅基器件对于成熟微加工工艺兼容性最好,但基于金属和一些宽带隙半导体材料,如碳化硅和氮化镓的真空纳米器件显示更好的电性能、耐温性和耐辐射性。尽管当今最发达的真空纳米二极管和三极管在大多数常规应用中仍然无法和固态集成电路抗衡,但它们正得到更多关注,并有望首先在高温或强辐射等恶劣环境实现应用。

     

    Abstract: Vacuum nano-diodes and nano-triodes have basic functions similar to traditional vacuum tubes, but can be manufactured by the most advanced micro-fabricating line to achieve small size, light weight and high integration, which makes them a rapid development in the past decade. The origin, development process and state-of-the-art of vacuum nano-diodes and nano-triodes are reviewed. Typical nanoscale vacuum devices with lateral structure, vertical structure and gate-all-around structure are introduced, and their strengths and weaknesses are analyzed. Silicon devices are most compatible with the mature micro-fabrication process, but the devices based on metals or wide band-gap semiconductors, such as silicon carbide and gallium nitride, have better electrical properties, higher temperature resistance and stronger radiation endurance. Although the developing vacuum nano-diodes and nano-triodes still cannot compete with solid-state integrated circuits in most regular applications, they are attracting more attention and are expected to be employed in harsh conditions with high temperatures or strong radiations.

     

/

返回文章
返回