高级检索

高功率电感耦合等离子体双温非平衡数值模拟

Numerical Simulation of Two-Temperature Non-Equilibrium for High Power Inductively Coupled Plasmas

  • 摘要: 湍流是等离子体在实际工作中的一种常见现象,为了研究湍流模型对等离子体炬内温度空间分布的影响,建立了一个双温度(2T)的热非平衡模型,并将其用于对湍流条件下的电感耦合等离子体(ICP)的数值模拟。通过改变注入反应气和冷却气流量以及输入功率等参数,讨论了不同的工作条件下等离子体的电子温度和重粒子温度的空间分布。研究结果表明:湍流与层流模型的模拟结果有显著的差别,过高的反应气流量会造成灭弧现象,等离子体炬入口处非平衡现象会更加明显;而加大冷却气流量会使整体的等离子体温度快速下降,非平衡区域有向等离子体中心扩张的趋势;加大线圈功率会使等离子体温度快速上升,非平衡区域有所减小,在等离子体炬入口处表现最为明显。该数值模型有助于确定产生所需等离子体的最佳条件。

     

    Abstract: A two-temperature (2T) thermal non-equilibrium model is established and applied to the numerical simulation of inductively coupled plasma (ICP) under turbulent conditions. The spatial distribution of electron temperature and heavy particle temperature of plasma under different working conditions is discussed by changing the flow of injected reaction gas and cooling gas and input power. The results show that there are significant differences between the simulation results of turbulent flow and laminar flow model. The high volume flow of reaction gas will cause the arc extinguishing phenomenon, and the non-equilibrium area at the inlet of the plasma torch will increase. However, increasing the volume flow of cooling gas will make the overall plasma temperature drop rapidly, and the non-equilibrium region has a tendency to expand to the plasma center. With the increase of coil power, the plasma temperature will rise rapidly and the non-equilibrium area at the inlet of the plasma torch will decrease. The numerical model helps to determine the optimal conditions for generating the desired plasma.

     

/

返回文章
返回