高级检索
赵碧婧, 陈叔平, 姚淑婷, 陈联, 史庆智, 刘竞中, 王玉洁. 氧化石墨烯对靶向吸氢纳米复合材料吸氢性能影响研究[J]. 真空科学与技术学报, 2024, 44(8): 712-719. DOI: 10.13922/j.cnki.cjvst.202311006
引用本文: 赵碧婧, 陈叔平, 姚淑婷, 陈联, 史庆智, 刘竞中, 王玉洁. 氧化石墨烯对靶向吸氢纳米复合材料吸氢性能影响研究[J]. 真空科学与技术学报, 2024, 44(8): 712-719. DOI: 10.13922/j.cnki.cjvst.202311006
ZHAO Bijing, CHEN Shuping, YAO Shuting, CHEN Lian, SHI Qingzhi, LIU Jingzhong, WANG Yujie. The Effect of Graphene Oxide on the Hydrogen-Absorbing Property of Targeted Hydrogen-Absorbing Nanocomposites[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2024, 44(8): 712-719. DOI: 10.13922/j.cnki.cjvst.202311006
Citation: ZHAO Bijing, CHEN Shuping, YAO Shuting, CHEN Lian, SHI Qingzhi, LIU Jingzhong, WANG Yujie. The Effect of Graphene Oxide on the Hydrogen-Absorbing Property of Targeted Hydrogen-Absorbing Nanocomposites[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2024, 44(8): 712-719. DOI: 10.13922/j.cnki.cjvst.202311006

氧化石墨烯对靶向吸氢纳米复合材料吸氢性能影响研究

The Effect of Graphene Oxide on the Hydrogen-Absorbing Property of Targeted Hydrogen-Absorbing Nanocomposites

  • 摘要: 以氧化石墨烯(GO)作为载体的有机吸氢材料和其催化剂的复合材料,在低温真空领域具备较优的应用前景。为研究载体材料GO对复合材料的形貌和吸氢性能的影响,制备了氧化石墨烯基纳米复合材料(Alkyne-PVA-(GO-PdO)),通过XRD、1H-NMR、SEM和TEM对其进行了表征,并与无氧化石墨烯的纳米复合材料(PdO@Alkyne-PVA)进行对比。结果表明,PdO和炔基化聚乙烯醇(Aklyne-PVA)能够成功负载在GO上,Alkyne-PVA-(GO-PdO)上的PdO纳米粒子分布良好,平均粒径为2.1 nm。采用静态膨胀法对两种吸氢材料的吸氢性能进行研究对比发现,Alkyne-PVA-(GO-PdO)在平衡压力为463.8 Pa时,吸氢量达到了11048.25 Pa·L/g,而PdO@Alkyne-PVA在平衡压力为560.21 Pa下,吸氢量仅达到4528.35 Pa·L/g。这归因于GO较高的比表面积和表面大量的含氧官能团、缺陷和空位改善了PdO纳米粒子的团聚问题。此外,GO在吸氢反应过程中保证了PdO纳米粒子不会因发生团聚现象而阻碍后续吸氢反应,使得产物钯金属发挥了其最优的催化性能,同时GO的氢溢流效应加速了解离后的氢原子的扩散,有效增强了复合材料的吸氢性能。文章验证了GO在吸氢领域中良好的应用潜力,为以GO为基底的吸氢材料的实现提供了可能。

     

    Abstract: The composites of organic hydrogen-absorbing materials and their catalysts using graphene oxide (GO) as a carrier have superior application prospects in the field of low-temperature vacuum. To investigate the effect of GO on the morphology and hydrogen absorption performance of the composites, Alkyne-PVA-(GO-PdO) was prepared, which was characterized by XRD, 1H-NMR, SEM and TEM, and compared with thePdO@Alkyne-PVA. The results show that PdO and Aklyne-PVA are successfully loaded on GO. The PdO nanoparticles on Alkyne-PVA-(GO-PdO) are well-distributed, with an average particle size of 2.1 nm. Comparing the hydrogen absorption performance of two hydrogen-absorbing materials using static expansion method, it is found that the sorption amount of Alkyne-PVA-(GO-PdO) at the equilibrium pressure of 463.8 Pa is 11048.25 Pa·L/g, and the sorption amount of PdO@Alkyne-PVA at the equilibrium pressure of 560.21 Pa is 4528.35 Pa·L/g. This is attributed to the higher specific surface area of GO and the large number of oxygen-containing functional groups, defects and vacancies on the surface ameliorating the agglomeration problem of PdO nanoparticles. In addition, GO ensures that PdO nanoparticles would not hinder subsequent hydrogen absorption reactions due to the agglomeration phenomenon during the hydrogen absorption reaction, allowing the Pd to exert its optimal catalytic performance. The hydrogen overflow effect of GO accelerates the diffusion of dissociated hydrogen atoms, which effectively enhances the hydrogen-absorbing performance of the composites. It demonstrates that the well application potential of GO in the field of hydrogen absorption and provides a possibility for the implementation of hydrogen-absorbing materials based on GO.

     

/

返回文章
返回