高级检索

基于GA-BP的介质阻挡放电的功率因子和放电功率预测模型

Power Factor and Discharge Power Prediction Model of Dielectric Barrier Discharge Based on GA-BP

  • 摘要: 为了提升放电等离子体的能量利用效率和注入功率,本文建立了以放电电压、放电频率、放电长度和气体流速为输入的遗传算法优化的BP神经网络模型,来预测介质阻挡放电的功率因子和放电功率,并借助模型预测数据探究了上述四个因素对功率因子和放电功率的影响规律,用以指导介质阻挡放电的实际应用及优化设计。根据测试集数据进行计算可得对放电功率进行预测的平均误差水平为3%,对功率因子进行预测的平均误差水平为2.73%,说明该模型具有较高的预测精度,且收敛速度较快。

     

    Abstract: In order to improve the energy utilization efficiency and injection power of the discharge plasma,a BP neural network optimized by genetic algorithm with the inputs of discharge voltage,discharge frequency,discharge length and gas flow rate was established to predict the power factor and discharge power. With the help of model prediction data,the influence laws of the above four factors on power factor and discharge power were explored to guide the practical application and optimal design of dielectric barrier discharge. According to the test set data,the average error level of the discharge power was 3%,the average error level of the power factor was 2.73%,indicating that the model had high prediction accuracy and fast convergence speed.

     

/

返回文章
返回