基于电化学金属化机制的电子突触电导可控性研究进展
Research Progress on Conductance Controllability of Electronic Synapses Based on Electrochemical Metallization Mechanism
-
摘要: 随着数据信息的爆炸性增长和微电子加工工艺逼近物理极限,互补金属氧化物半导体(CMOS)器件难以应用于大规模神经形态器件的构建。采用非CMOS器件实现突触可塑性模拟被认为是后摩尔时代构造人工神经网络的关键。在众多的非CMOS器件中,忆阻器具有电导可调、结构简单等优点,被认为是再现神经突触功能、实现计算存储一体化的基础元件。在众多类型的忆阻器中,基于电化学金属化机制(ECM)的忆阻器具有机理明确、可超高密度集成、对材料属性不敏感等优点,特别适合应用于电子突触的构建。但ECM电子突触存在着电导可控性不足的问题,制约着高性能神经形态器件的实现。国内外研究人员针对ECM电子突触的电导可控性展开了大量研究。本综述从器件结构和材料角度梳理了ECM电子突触电导可控性的优化方法。Abstract: With the explosive growth of information and the limitations of microelectronic processing technology,complementary metal oxide semiconductor(CMOS)devices are difficult to apply to the construction of largescale neuromorphic devices. The use of non-CMOS devices to achieve synaptic plasticity simulation is considered to be an effective way to build artificial neural networks in the post-Moore era. Among many non-CMOS devices,the memristor has the advantages of adjustable conductance and simple structure,and is considered to be the basic element to realize the synaptic function. Particularly,the electrochemical metallization mechanism(ECM)memristors have the advantages of ultra-high-density integration and insensitive to material properties. However,ECM electronic synapses have the problem of poor conductance controllability,which restricts the realization of high-performance neuromorphic devices. Researchers have conducted a lot of research on the conductance controllability of ECM electronic synapses. This review summarizes the optimization methods of conductance controllability of ECM electronic synapse from the perspective of device structure and materials.