Application of Scanning Transmission Electron Microscopy in the Studies of Atomically Dispersed Catalysts
-
摘要: 球差校正扫描透射电子显微镜(STEM)因其原子级的空间分辨率和元素解析能力,在纳米功能材料的结构和成分分析中得到广泛使用。扫描透射电子显微镜高角环形暗场像技术(STEM-HAADF)凭借独特的原子序数衬度(Z衬度)和电子通道效应,在负载型纳米催化剂的结构研究中有着显著优势。通过STEM-HAADF成像,研究人员不仅可以直接观测到单个贵金属原子在较轻的载体上的实空间分布,还可以实现对载体表面上不同的负载贵金属物种的统计分析,这为近十年兴起的单原子催化剂研究提供了最重要的结构分析支持。相对于STEM-HAADF成像,基于STEM的X射线能谱(EDS)和电子能量损失谱(EELS)的谱学分析技术则能够在纳米尺度乃至原子尺度提供直接的化学成分或化学价态信息。成像和谱学的结合能够更准确地确定负载的金属原子在基底上的空间构型。进一步将原位电镜技术引入扫描透射电子显微镜内,则可以在时间尺度上探究催化剂在接近工作环境下的结构演化,从而更全面地揭示催化剂化学活性的结构起源与失效机制。本文结合近几年的部分代表性研究成果,简要介绍球差校正STEM技术在原子级分散负载催化剂研究中的应用,并对其在该研究领域的进一步发展进行了展望。Abstract: Aberration-corrected scanning transmission electron microscopy(STEM) has been widely used in the structural and compositional analysis of functional materials due to its atomic-level spatial resolution in imaging and spectroscopic analysis.In particular, STEM high-angle annular dark-field(STEM-HAADF) imaging has significant advantages in the structural analysis of supported metal catalysts by virtue of its atomic-number contrast(Z contrast) and electron channeling effect.Through STEM-HAADF imaging, the distribution of heavy noble metal atoms on light support materials can be directly visualized in real space with single-atom sensitivity, and statistical analysis of different surface species can also be obtained, which makes STEM-HAADF imaging the most important structural analysis technique for the studies of emerging single-atom catalysts(SACs).As complementary techniques to STEM-HAADF imaging, STEM-based X-ray energy dispersive spectroscopy(EDS) and electron energy loss spectroscopy(EELS) can directly probe chemical composition and/or valence states at the nanoscale or even the atomic scale.The combination of imaging and spectroscopy in STEM thus provides a comprehensive analysis of the catalyst structure from multiple perspectives.Furthermore, when combined with in-situ electron microscopy techniques, the structural evolution of the catalyst under simulated working environments can be explored on the temporal axis, helping to unveil the structural origins of the catalytic activity and the failure mechanism of the catalysts.This review article briefly introduces the application of aberration-corrected STEM in the research of atomically dispersed supported catalysts, and provides prospects for the future development of STEM techniques for catalysis research.
-
-
[1] FRIEND C M,XU B.Heterogeneous Catalysis:A Central Science for a Sustainable Future[J].Accounts of Chemical Research,2017,50(3):517-21
[2] YANG X-F,WANG A,QIAO B,et al.Single-Atom Catalysts:A New Frontier in Heterogeneous Catalysis[J].Accounts of Chemical Research,2013,46(8):1740-8
[3] WANG A,LI J,ZHANG T.Heterogeneous Single-Atom Catalysis[J].Nature Reviews Chemistry,2018,2(6):65-81
[4] LANG R,DU X,HUANG Y,et al.Single-Atom Catalysts Based on the Metal-Oxide Interaction[J].Chemical Reviews,2020
[5] LI Z,JI S,LIU Y,et al.Well-Defined Materials for Heterogeneous Catalysis:from Nanoparticles to Isolated Single-Atom Sites[J].Chemical Reviews,2020,120(2):623-82
[6] LIU J.Catalysis by Supported Single Metal Atoms[J].ACS Catalysis,2017,7(1):34-59
[7] KRIVANEK O L,CHISHOLM M F,DELLBY N,et al.Atomic-Resolution STEM at Low Primary Energies[M].New York:PENNYCOOK S J,NELLIST P D.Scanning Transmission Electron Microscopy.Springer,2011:615-58
[8] KRIVANEK O L,DELLBY N,SPENCE A J,et al.Aberration Correction in the STEM[M].Bristol:Iop Publishing Ltd,1997:35-40
[9] KRIVANEK O L,DELLBY N,LUPINI A R.Towards Sub-Å Electron Beams[J].Ultramicroscopy,1999,78(1-4):1-11
[10] HAIDER M,ROSE H,UHLEMANN S,et al.Towards 0.1 nm Resolution with the First Spherically Corrected Transmission Electron Microscope[J].Microscopy,1998,47(5):395-405
[11] HAIDER M,UHLEMANN S,SCHWAN E,et al.Electron Microscopy Image Enhanced[J].Nature,1998,392(6678):768-9
[12] ZHU Y,INADA H,NAKAMURA K,et al.Imaging Single Atoms Using Secondary Electrons with an Aberration-Corrected Electron Microscope[J].Nature Materials,2009,8(10):808-12
[13] JINSCHEK J R,HELVEG S.Image Resolution and Sensitivity in an Environmental Transmission Electron Microscope[J].Micron,2012,43(11):1156-68
[14] YOKOSAWA T,ALAN T,PANDRAUD G,et al.In-Situ TEM on (de)Hydrogenation of Pd at 0.5-4.5 Bar Hydrogen Pressure and 20-400℃[J].Ultramicroscopy,2012,112(1):47-52
[15] LAGROW A P,WARD M R,LLOYD D C,et al.Visualizing the Cu/Cu2O Interface Transition in Nanoparticles with Environmental Scanning Transmission Electron Microscopy[J].Journal of the American Chemical Society,2017,139(1):179-85
[16] QIAO B,WANG A,YANG X,et al.Single-Atom Catalysis of CO Oxidation Using Pt1/FeOx[J].Nature Chemistry,2011,3(8):634-41
[17] BYSKOV L S,NORSKOV J K,CLAUSEN B S,et al.DFT Calculations of Unpromoted and Promoted MoS2-Based Hydrodesulfurization Catalysts[J].Journal of Catalysis,1999,187(1):109-22
[18] KARUNADASA H I,MONTALVO E,SUN Y,et al.A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation[J].Science,2012,335(6069):698-702
[19] LIU G,ROBERTSON A W,LI M M,et al.MoS2 Monolayer Catalyst Doped with Isolated Co Atoms for the Hydrodeoxygenation Reaction[J].Nature Chemistry,2017,9(8):810-6
[20] LI H,WANG L,DAI Y,et al.Synergetic Interaction Between Neighbouring Platinum Monomers in CO2 Hydrogenation[J].Nature Nanotechnology,2018,13(5):411-7
[21] HERZING A A,KIELY C J,CARLEY A F,et al.Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation[J].Science,2008,321(5894):1331-5
[22] ZHOU W,ROSS-MEDGAARDEN E I,KNOWLES W V,et al.Identification of Active Zr-WOx Clusters on a ZrO2 Support for Solid Acid Catalysts[J].Nature Chemistry,2009,1(9):722
[23] YAO S,ZHANG X,ZHOU W,et al.Atomic-Layered Au Clusters on α-MoC as Catalysts for the Low-Temperature Water-Gas Shift Reaction[J].Science,2017,357(6349):389
[24] LIN L,ZHOU W,GAO R,et al.Low-Temperature Hydrogen Production from Water and Methanol Using Pt/α-MoC Catalysts[J].Nature,2017,544(7648):80-3
[25] LIN L,YAO S,GAO R,et al.A Highly CO-Tolerant Atomically Dispersed Pt Catalyst for Chemoselective Hydrogenation[J].Nature Nanotechnology,2019,14(4):354-61
[26] ZHANG X,ZHANG M,DENG Y,et al.A Stable Low-Temperature H2-Production Catalyst by Crowding Pt on α-MoC[J].Nature,2021,589(7842):396-401
[27] GUO X,FANG G,LI G,et al.Direct,Nonoxidative Conversion of Methane to Ethylene,Aromatics,and Hydrogen[J].Science,2014,344(6184):616
[28] WEI S,LI A,LIU J-C,et al.Direct Observation of Noble Metal Nanoparticles Transforming to Thermally Stable Single Atoms[J].Nature Nanotechnology,2018,13(9):856-61
[29] LI Z,CHEN Y,JI S,et al.Iridium Single-Atom Catalyst on Nitrogen-Doped Carbon for Formic Acid Oxidation Synthesized Using a General Host-Guest Strategy[J].Nature Chemistry,2020
[30] SUN X,DAWSON S R,PARMENTIER T E,et al.Facile Synthesis of Precious-Metal Single-Site Catalysts Using Organic Solvents[J].Nature Chemistry,2020,12(6):560-7
[31] LIU P,ZHAO Y,QIN R,et al.Photochemical Route for Synthesizing Atomically Dispersed Palladium Catalysts[J].Science,2016,352(6287):797
[32] LIU D,LI X,CHEN S,et al.Atomically Dispersed Platinum Supported on Curved Carbon Supports for Efficient Electrocatalytic Hydrogen Evolution[J].Nature Energy,2019,4(6):512-8
[33] Li S,Cao R,Xu M,et al.Atomically Dispersed Ir/α-MoC Catalyst with High Metal Loading and Thermal Stability for Water-Promoted Hydrogenation Reaction[J].National Science Review,2021,in press
[34] LIN L,YU Q,PENG M,et al.Atomically Dispersed Ni/α-MoC Catalyst for Hydrogen Production From Methanol/water[J].Journal of the American Chemical Society,2021,143(1):309-17
[35] WANG Z-L,CHOI J,XU M,et al.Optimizing Electron Densities of Ni-N-C Complexes by Hybrid Coordination for Efficient Electrocatalytic CO2 Reduction[J].ChemSusChem,2020,13(5):929-37
[36] LI M,DUANMU K,WAN C,et al.Single-Atom Tailoring of Platinum Nanocatalysts for High-Performance Multifunctional Electrocatalysis[J].Nature Catalysis,2019,2(6):495-503
[37] CAO L,LIU W,LUO Q,et al.Atomically Dispersed Iron Hydroxide Anchored on Pt for Preferential Oxidation of CO in H2[J].Nature,2019,565(7741):631-5
[38] GE Y,QIN X,LI A,et al.Maximizing the Synergistic Effect of CoNi Catalyst on α-MoC for Robust Hydrogen Production[J].Journal of the American Chemical Society,2021,143(2):628-33
[39] LI Y,ZHOU W,WANG H,et al.An Oxygen Reduction Electrocatalyst Based on Carbon Nanotube-Graphene Complexes[J].Nature Nanotechnology,2012,7(6):394
[40] CHUNG H T,CULLEN D A,HIGGINS D,et al.Direct Atomic-Level Insight into the Active Sites of a High-Performance PGM-Free ORR Catalyst[J].Science,2017,357(6350):479-84
[41] YOSHIDA H,KUWAUCHI Y,JINSCHEK J R,et al.Visualizing Gas Molecules Interacting with Supported Nanoparticulate Catalysts at Reaction Conditions[J].Science,2012,335(6066):317
[42] Zhang X,Han S,Zhu B,et al.Reversible Loss of Core-Shell Structure for Ni-Au Bimetallic Nanoparticles During CO2 Hydrogenation[J].Nature Catalysis,2020,3(4):411-7
[43] ZHOU H,ZHAO Y,XU J,et al.Recover the Activity of Sintered Supported Catalysts by Nitrogen-Doped Carbon Atomization[J].Nature Communications,2020,11(1):335
[44] YUAN W,ZHU B,LI X-Y,et al.Visualizing H2O Molecules Reacting at TiO2 Active Sites with Transmission Electron Microscopy[J].Science,2020,367(6476):428
[45] YUAN W,ZHU B,FANG K,et al.In Situ Manipulation of the Active Au-TiO2 Interface with Atomic Precision during CO Oxidation[J].Science,2021,371(6528):517
[46] BOYES E D,WARD M R,LARI L,et al.ESTEM Imaging of Single Atoms Under Controlled Temperature and Gas Environment Conditions in Catalyst Reaction Studies[J].Annalen der Physik,2013,525(6):423-9
[47] BOYES E D,GAI P L.Visualising Reacting Single Atoms Under Controlled Conditions:Advances in Atomic Resolution in Situ Environmental (Scanning)Transmission Electron Microscopy(E(S)TEM)[J].Comptes Rendus Physique,2014,15(2):200-13
[48] Boyes E D,LaGrow A P,Ward M R,et al.Single Atom Dynamics in Chemical Reactions[J].Accounts of Chemical Research,2020,53(2):390-9
[49] DERITA L,RESASCO J,DAI S,et al.Structural Evolution of Atomically Dispersed Pt Catalysts Dictates Reactivity[J].Nature Materials,2019,18(7):746-51
[50] CREEMER J,HELVEG S,HOVELING G,et al.Atomic-Scale Electron Microscopy at Ambient Pressure[J].Ultramicroscopy,2008,108(9):993-8
[51] DAI S,GAO W,ZHANG S,et al.Transmission Electron Microscopy with Atomic Resolution Under Atmospheric Pressures[J].MRS Communications,2017,7(4):798-812
[52] DAI S,GAO W,GRAHAM G W,et al.In Situ Atmospheric Transmission Electron Microscopy of Catalytic Nanomaterials[J].MRS Advances,2018,3(39):2297-303
[53] Ye F,Xu M,Dai S,et al.In Situ TEM Studies of Catalysts Using Windowed Gas Cells[J].Catalysts,2020,10(7):779
[54] LANG R,XI W,LIU J-C,et al.Non Defect-Stabilized Thermally Stable Single-Atom Catalyst[J].Nature Communications,2019,10(1):234
[55] ZHANG S,PLESSOW P N,WILLIS J J,et al.Dynamical Observation and Detailed Description of Catalysts Under Strong Metal-Support Interaction[J].Nano Letters,2016,16(7):4528-34
[56] AVANESIAN T,DAI S,KALE M J,et al.Quantitative and Atomic-Scale View of CO-Induced Pt Nanoparticle Surface Reconstruction at Saturation Coverage via DFT Calculations Coupled with in Situ TEM and IR[J].Journal of the American Chemical Society,2017,139(12):4551-8
[57] DAI S,HOU Y,ONOUE M,et al.Revealing Surface Elemental Composition and Dynamic Processes Involved in Facet-Dependent Oxidation of Pt3Co Nanoparticles via in Situ Transmission Electron Microscopy[J].Nano Letters,2017,17(8):4683-8
[58] DAI S,YOU Y,ZHANG S,et al.In Situ Atomic-Scale Observation of Oxygen-Driven Core-Shell Formation in Pt3Co Nanoparticles[J].Nature Communications,2017,8(1):204
[59] MATSUBU J C,ZHANG S,DERITA L,et al.Adsorbate-Mediated Strong Metal-Support Interactions in Oxide-Supported Rh Catalysts[J].Nature Chemistry,2017,9(2):120
[60] EGERTON R F.Electron Energy-Loss Spectroscopy in the Electron Microscope[M].Boston:Springer,2011
[61] Brown L.A Synchrotron in A Microscope[C].in:J.M.Rodenburg(Ed.).Elecrton Microscopy and Analysis 1997,Institute of Physics Conference Series 153,IOP Publishing,London,1997:17-22
[62] CHEN A,YU X,ZHOU Y,et al.Structure of the Catalytically Active Copper-Ceria Interfacial Perimeter[J].Nature Catalysis,2019,2(4):334
[63] SHIBATA N,SEKI T,SÁNCHEZ-SANTOLINO G,et al.Electric Field Imaging of Single Atoms[J].Nature Communications,2017,(8):15631
[64] ISHIKAWA R,FINDLAY S D,SEKI T,et al.Direct Electric Field Imaging of Graphene Defects[J].Nature Communications,2018,9(1):3878
[65] SÁNCHEZ-SANTOLINO G,LUGG N R,SEKI T,et al.Probing the Internal Atomic Charge Density Distributions in Real Space[J].ACS Nano,2018,12(9):8875-81
[66] GAO W,ADDIEGO C,WANG H,et al.Real-Space Charge-Density Imaging with Sub-Ångström Resolution by Four-Dimensional Electron Microscopy[J].Nature,2019,575(7783):480-4
[67] OPHUS C.Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM):from Scanning Nanodiffraction to Ptychography and Beyond[J].Microscopy and Microanalysis,2019,25(3):563-82
[68] PENNYCOOK T J,MARTINEZ G T,NELLIST P D,et al.High Dose Efficiency Atomic Resolution Imaging via Electron Ptychography[J].Ultramicroscopy,2019,196:131-5
[69] CHEN Z,ODSTRCIL M,JIANG Y,et al.Mixed-State Electron Ptychography Enables Sub-Angstrom Resolution Imaging with Picometer Precision at Low Dose[J].Nature Communications,2020,11(1):2994
计量
- 文章访问数: 67
- HTML全文浏览量: 5
- PDF下载量: 11