Citation: | LI Sen, LIAO Xiaoxu, ZHAO Yuetong, CHENG Weimin, MA Tingting, DAI Jiannan. Simulation of CO2 Plasma Streamer in Non-Uniform Electric Field[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2024, 44(7): 627-635. DOI: 10.13922/j.cnki.cjvst.202403017 |
There are many electron collisions and chemical reactions in CO2 plasma, making conducting in-depth simulations of CO2 streamer discharge quite challenging. In this article, we establish a non-uniform electric field model for a needle-flat electrode and use a plasma fluid model and adaptive mesh refinement method to numerically simulate the CO2 plasma streamer. We studied the effects of external voltage, discharge pressure, and other parameters on the spatial field strength variation, charged particle distribution, and flow velocity in the CO2 streamer. This study contributes to a deeper understanding of the formation process of streamers in CO2 plasma utilization technology.
[1] |
Bogaerts A, Berthelot A, Heijkers S, et al. CO2 conversion by plasma technology: insights from modeling the plasma chemistry and plasma reactor design[J]. Plasma Sources Science and Technology,2017,26(6):063001 doi: 10.1088/1361-6595/aa6ada
|
[2] |
Zhang Y. Carbon dioxide utilization: A carbon-neutral energy cycle[J]. Nature Reviews Chemistry,2017,1(7):1−1
|
[3] |
Aresta M, Dibenedetto A, Angelini A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2[J]. Chemical Reviews,2014,114(3):1709−1742 doi: 10.1021/cr4002758
|
[4] |
Centi G, Quadrelli E A, Perathoner S. Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries[J]. Energy & Environmental Science,2013,6(6):1711−1731
|
[5] |
Kozák T, Bogaerts A. Splitting of CO2 by vibrational excitation in non-equilibrium plasmas: a reaction kinetics model[J]. Plasma Sources Science and Technology,2014,23(4):045004 doi: 10.1088/0963-0252/23/4/045004
|
[6] |
Qin Y, Niu G, Wang X, et al. Status of CO2 conversion using microwave plasma[J]. Journal of CO2 Utilization,2018,28:283−291 doi: 10.1016/j.jcou.2018.10.003
|
[7] |
Wang X C, Bai J X, Zhang T H, et al. Comprehensive study on plasma chemistry and products in CO2 pulsed discharges under Martian pressure[J]. Vacuum,2022,203:111200 doi: 10.1016/j.vacuum.2022.111200
|
[8] |
Wanten B, Vertongen R, De Meyer R, et al. Plasma-based CO2 conversion: How to correctly analyze the performance?[J]. Journal of Energy Chemistry,2023,86:180−196 doi: 10.1016/j.jechem.2023.07.005
|
[9] |
Lu Q, Lei W, Yue W, et al. Reaction mechanism explorations on non-thermal plasma reforming of CO2-CH4 by combining kinetics modeling and emission spectroscopy measurements[J]. Fuel,2023,344:128041 doi: 10.1016/j.fuel.2023.128041
|
[10] |
Longo V, Centi G, Perathoner S, et al. CO2 utilisation with plasma technologies[J]. Current Opinion in Green and Sustainable Chemistry,2024,46:100893 doi: 10.1016/j.cogsc.2024.100893
|
[11] |
Rusanov V D, Fridman A A, Sholin G V. The physics of a chemically active plasma with nonequilibrium vibrational excitation of molecules[J]. Soviet Physics Uspekhi,1981,24(6):447 doi: 10.1070/PU1981v024n06ABEH004884
|
[12] |
Bongers W, Bouwmeester H, Wolf B, et al. Plasma-driven dissociation of CO2 for fuel synthesis[J]. Plasma Processes and Polymers,2017,14(6):1600126 doi: 10.1002/ppap.201600126
|
[13] |
Huang W, Yue W, Dong Y, et al. Field parameters investigation of CO2 splitting in atmospheric DBD plasma by multi-physics coupling simulation and emission spectroscopy measurements[J]. Fuel,2023,353:129236 doi: 10.1016/j.fuel.2023.129236
|
[14] |
Aerts R, Martens T, Bogaerts A. Influence of vibrational states on CO2 splitting by dielectric barrier discharges[J]. The Journal of Physical Chemistry C,2012,116(44):23257−23273 doi: 10.1021/jp307525t
|
[15] |
Aerts R, Somers W, Bogaerts A. Carbon dioxide splitting in a dielectric barrier discharge plasma: a combined experimental and computational study[J]. ChemSusChem,2015,8(4):702−716 doi: 10.1002/cssc.201402818
|
[16] |
Mao X, Chen Q, Rousso A C, et al. Effects of controlled non-equilibrium excitation on H2/O2/He ignition using a hybrid repetitive nanosecond and DC discharge[J]. Combustion and Flame,2019,206:522−535 doi: 10.1016/j.combustflame.2019.05.027
|
[17] |
Marskar R. A 3D kinetic Monte Carlo study of streamer discharges in CO2[J]. Plasma Sources Science and Technology,2024,33(2):025023 doi: 10.1088/1361-6595/ad28cf
|
[18] |
Zhelezniak M B, Mnatsakanian A, Sizykh S. Photoionization of nitrogen and oxygen mixtures by radiation from a gas discharge[J]. Teplofizika Vysokikh Temperatur,1982,20(3):423−428
|
[19] |
Bagheri B, Teunissen J, Ebert U, et al. Comparison of six simulation codes for positive streamers in air[J]. Plasma Sources Science and Technology,2018,27(9):095002 doi: 10.1088/1361-6595/aad768
|
[20] |
Alves L L. The IST-LISBON database on LXCat[J]. Journal of Physics: Conference Series,2014,565(1):012007
|
[21] |
Hagelaar G J M, Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J]. Plasma Sources Science and Technology,2005,14(4):722 doi: 10.1088/0963-0252/14/4/011
|
[1] | YUAN Yuejin, LI Ying, XU Yingying, LI Shenshen. Optimization of Vacuum Steam Pulsating Blanching Process of Prepared Okra Vegetable by Response Surface Method[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2024, 44(6): 511-520. DOI: 10.13922/j.cnki.cjvst.202401020 |
[2] | CAO Guozhi. Optimization of Flow Field Characteristics of the Sweeper Settling Chamber Based on Response Surface Method[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2023, 43(11): 967-976. DOI: 10.13922/j.cnki.cjvst.202308004 |
[3] | YUAN Yuejin, ZOU Na, XU Yingying, WANG Dong, ZHAO Zhe. Effect of Combined Drying with Hot Air and Vacuum on Quality ofAstragalus Membranaceus and Process Optimization[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2023, 43(10): 879-889. DOI: 10.13922/j.cnki.cjvst.202304009 |
[4] | FU Wenze, ZHAO Guoyong, LI Chunxiao, ZHENG Zhifu, MENG Fanrui. Optimization Design of Liquid Ring Pump Impeller with High Energy Efficiency Based on Response Surface Experiment[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2022, 42(12): 920-926. DOI: 10.13922/j.cnki.cjvst.202206004 |
[5] | ZHANG Jie, XU Bing, DUAN Jiawei, LIU Zijing, WENG Ziqing. Optimization of Laser Additive Remanufacturing Process Parameters of H13 Die Steel Based on Response Surface Method[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2022, 42(7): 547-554. DOI: 10.13922/j.cnki.cjvst.202202001 |
[6] | SUN Lichong, LIU Xiaoming, CHEN Hai, JIANG Wentao, LI Peiyuan, SHI Zhengkai, LIU Yixiong. Optimal Design of Closing Drive for Spring Operating Mechanism with 10 kV Vacuum Circuit Breaker[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2021, 41(8): 745-750. DOI: 10.13922/j.cnki.cjvst.202008038 |
[7] | Liu Xiaojing, Chen Jiaping, Zhang Yicheng, Tan Bin, Liu Fan, Zhang Mingfeng, Wu Qiangyun, Guo Yuanchang. Design Optimization of Heating-Pad with Hot-Air Path in Square-Grid Shape for Road Surface Deicing: A Simulation Study[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2019, 39(8): 725-731. DOI: 10.13922/j.cnki.cjovst.2019.08.18 |
[8] | Xu Xiang-Chuan, Wen Hai-Jun, Wang Jun-Yuan, Miao Miao. Optimization of Laser Cladding Conditionsin Response Surface Method for Repairing Damaged Alloy Parts[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2018, 38(7): 615-620. DOI: 10.13922/j.cnki.cjovst.2018.07.11 |
[9] | Shao Yanjun, Miao Miao, Wang Junyuan, Xu Xiangchuan. Optimization of Ultrasonic-Assisted Grinding Conditions of Carbon Fiber Composite Surfaces[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2018, 38(6): 515-520. DOI: 10.13922/j.cnki.cjovst.2018.06.12 |
[10] | Miao Miao, Shao Yanjun, Wang Junyuan, Xu Xiangchuan. Influence of Structure on Properties of Steam-Jet Pump:A Simulation and Analytical Study[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2018, 38(3): 176-180. DOI: 10.13922/j.cnki.cjovst.2018.03.02 |