Service No
Advanced Search
GUAN Yuhui, WANG Pengcheng, LIU Shunming, LIU Jiaming, SUN Xiaoyang, TAN Biao, WANG Yigang, ZHU Bangle, LI Ahong, LI Bo, WU Xiaolei, YU Yongji, DENG Changdong, YUAN Yue. Outgassing of SmCo Permanent Magnets Drift Tube and Residual Gas Analysis[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2024, 44(9): 791-796. DOI: 10.13922/j.cnki.cjvst.202403013
Citation: GUAN Yuhui, WANG Pengcheng, LIU Shunming, LIU Jiaming, SUN Xiaoyang, TAN Biao, WANG Yigang, ZHU Bangle, LI Ahong, LI Bo, WU Xiaolei, YU Yongji, DENG Changdong, YUAN Yue. Outgassing of SmCo Permanent Magnets Drift Tube and Residual Gas Analysis[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2024, 44(9): 791-796. DOI: 10.13922/j.cnki.cjvst.202403013

Outgassing of SmCo Permanent Magnets Drift Tube and Residual Gas Analysis

More Information
  • Received Date: March 24, 2024
  • Available Online: September 06, 2024
  • This article explains the experimental principle of the synchronous gas path method to measure the outgassing rate of materials systematically. First, the outgassing rate of SmCo permanent magnets at room temperature is measured at different times and its fitting curve is given, which can predict the outgassing rate of SmCo materials corresponding to a longer period of time. Secondly, the total outgassing of the SmCo permanent magnet drift tube prototype was experimentally measured and compared with the total outgassing of the SmCo sample. It was analyzed that air inclusion was the main reason for the slow decline in the outgassing of the drift tube prototype, and an improvement plan was proposed. Then, the residual gas composition under different conditions is compared, and the analysis results provide improvement ideas for subsequent drift tube processing. Finally, the pressure change caused by the application of the SmCo permanent magnet drift tube in the DTL1# physical cavity was calculated, providing data support for the application of the SmCo permanent magnet drift tube.

  • [1]
    刘华昌, 李阿红, 彭军, 等. 漂移管直线加速器加速电场分布及稳定性调谐研究[J]. 原子能科学技术,2017,51(10):1874−1879 (in Chinese) doi: 10.7538/yzk.2017.youxian.0073

    Liu H C, Li A H, Peng J, et al. Design study on accelerating field distribution and stability tuning of drift tube linac[J]. Atomic Energy Science and Technology,2017,51(10):1874−1879 doi: 10.7538/yzk.2017.youxian.0073
    [2]
    李波, 刘华昌, 吴小磊, 等. 中国散裂中子源漂移管磁铁线圈研制[J]. 核科学与工程,2023,43(3):576−580 (in Chinese) doi: 10.3969/j.issn.0258-0918.2023.03.014

    Li B, Liu H C, Wu X L, et al. Development of the drift tube magnet coil for China spallation neutron source[J]. Nuclear Science and Engineering,2023,43(3):576−580 doi: 10.3969/j.issn.0258-0918.2023.03.014
    [3]
    Iwashita Y, Yamada M, Ushijima S, et al. Variable permanent magnet multipoles[J]. IEEE Transactions on Applied Superconductivity,2012,22(3):4000905 doi: 10.1109/TASC.2012.2185471
    [4]
    Kashikhin V S, Andreev N, Lamm M J, et al. Design and manufacturing main linac superconducting quadrupole for ILC at fermilab[J]. IEEE Transactions on Applied Superconductivity,2008,18(2):155−158 doi: 10.1109/TASC.2008.921945
    [5]
    Mihara T, Iwashita Y, Kumada M, et al. Super strong permanent magnet quadrupole for a linear collider[J]. IEEE Transactions on Applied Superconductivity,2004,14(2):469−472 doi: 10.1109/TASC.2004.829698
    [6]
    Teotia V, Malhotra S, Mishra E, et al. Design, development and characterization of tunable permanent magnet quadrupole for drift tube linac[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,2020,982:164528 doi: 10.1016/j.nima.2020.164528
    [7]
    Halbach K. Application of permanent magnets in accelerators and electron storage rings (invited)[J]. Journal of Applied Physics,1985,57(8):3605−3608 doi: 10.1063/1.335021
    [8]
    王勇, 李格. 永磁体钕铁硼的热出气率[J]. 真空科学与技术,2000,20(4):296 (in Chinese)

    Wang Y, Li G. Thermal outgassing of NdFeB permanent magnets[J]. Vacuum Science and Technology(China),2000,20(4):296
    [9]
    刘玉魁. 真空工程设计[M]. 北京: 化学工业出版社, 2004: 1250−1254 (in Chinese)

    Liu Y K. Vacuum engineering design[M]. Beijing: Chemical Industry Press, 2004: 1250−1254
    [10]
    冯焱, 曾祥坡, 张涤新, 等. 小孔流导法材料放气率测量装置的设计[J]. 宇航计测技术,2010,30(3):66−69 (in Chinese) doi: 10.3969/j.issn.1000-7202.2010.03.016

    Feng Y, Zeng X P, Zhang D X, et al. Design of measurement apparatus for material outgassing rates by orifice conductance method[J]. Journal of Astronautic Metrology and Measurement,2010,30(3):66−69 doi: 10.3969/j.issn.1000-7202.2010.03.016
    [11]
    关玉慧, 宋洪, 董海义, 等. 常见放气率测试方法的量化比较[J]. 真空科学与技术学报,2020,40(6):524−530 (in Chinese)

    Guan Y H, Song H, Dong H Y, et al. Measurement of low outgassing-rate in self-developed pumping-path switching algorithm: a methodological study[J]. Chinese Journal of Vacuum Science and Technology,2020,40(6):524−530
    [12]
    关玉慧, 董海义, 宋洪. 一种双测试室测量材料放气率的装置及方法: 110501257A[P]. 2019 (in Chinese)

    Guan Y H, Dong H Y, Song H. Device and method for measuring material outgassing rate in dual test chambers: CN110501257A[P]. 2019
    [13]
    Chimenti V, Di Raddo R, Lollo V, et al. Preliminary vacuum simulation results on ELI C-band accelerating structure[R]. 2014
    [14]
    达道安. 真空设计手册(第三版)[M]. 北京: 国防工业出版社, 2004: 116−117 (in Chinese)

    Da D A. Vacuum design manual(3rd edition)[M]. Beijing: National Defense Industry Press, 2004: 116−117

Catalog

    Article views (43) PDF downloads (9) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return