Service No
Advanced Search
LIU Ya, ZHANG Zhaohui, HE Yangyu, JIA Xiaotong, WANG Qiang, FENG Xiangxiang, CHENG Xingwang. Effect of Hot Rolling Temperature on Microstructure and Mechanical Properties of Ti-Zr-V-Nb-Si Alloy[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2024, 44(10): 863-870. DOI: 10.13922/j.cnki.cjvst.202402011
Citation: LIU Ya, ZHANG Zhaohui, HE Yangyu, JIA Xiaotong, WANG Qiang, FENG Xiangxiang, CHENG Xingwang. Effect of Hot Rolling Temperature on Microstructure and Mechanical Properties of Ti-Zr-V-Nb-Si Alloy[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2024, 44(10): 863-870. DOI: 10.13922/j.cnki.cjvst.202402011

Effect of Hot Rolling Temperature on Microstructure and Mechanical Properties of Ti-Zr-V-Nb-Si Alloy

More Information
  • Received Date: March 03, 2024
  • Available Online: May 31, 2024
  • Light weight high entropy alloy (TiZrV0.5Nb0.5)99.4Si0.6 with a density of 6.1 g/cm3 was prepared by vacuum arc melting. The effects of different hot-rolling temperatures (900℃, 1000℃ and 1100℃) on the microstructure and mechanical properties were investigated. The results show that after rolling, the strength and elongation are both improved. The tensile strength and elongation of the alloy with a rolling temperature of 900℃ reached 1164.5 MPa and 14.7%, which was best and can surpass 13.9% and 950% than that of the as-cast alloy respectively. However, with the further increase of hot-rolling temperature, the grain size increases and the mechanical properties decline. The excellent mechanical properties of the alloy with a rolling temperature of 900℃ are the result of dislocation, solid solution, second phase and grain refinement.

  • [1]
    Ritchie R O. The conflicts between strength and toughness[J]. Nature Materials, Nature Publishing Group,2011,10(11):817−822
    [2]
    Gao Q, Song K, Yan D, et al. Structure-property relations of lightweight Ti-Sc-Zr-Nb-V high-entropy alloys[J]. Journal of Alloys and Compounds,2022,915:165295 doi: 10.1016/j.jallcom.2022.165295
    [3]
    Liu Y, Yao Z, Zhang P, et al. Tailoring high-temperature oxidation resistance of FeCrMnVSi x high entropy alloy coatings via building Si-rich dendrite microstructure[J]. Applied Surface Science,2022,606:154862 doi: 10.1016/j.apsusc.2022.154862
    [4]
    Tang Z, Senkov O N, Parish C M, et al. Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization[J]. Materials Science and Engineering: A,2015,647:229−240 doi: 10.1016/j.msea.2015.08.078
    [5]
    Miao J, Slone C E, Smith T M, et al. The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy[J]. Acta Materialia,2017,132:35−48 doi: 10.1016/j.actamat.2017.04.033
    [6]
    吴炳乾, 饶湖常, 张冲, 等. Si含量对FeCoCr0.5NiBSi x高熵合金涂层组织结构和耐磨性的影响[J]. 表面技术,2015,44(12):85−91(in Chinese)

    Wu B Q, Rao H C, ZHANG C, et al. Effect of silicon content on the microstructure and wear resistance of FeCoCr0.5NiBSi x high-entropy alloy coatings[J]. Surface Technology,2015,44(12):85−91
    [7]
    Chen L, Zhou Z, Tan Z, et al. High temperature oxidation behavior of Al0.6CrFeCoNi and Al0.6CrFeCoNiSi0.3 high entropy alloys[J]. Journal of Alloys and Compounds,2018,764:845−852 doi: 10.1016/j.jallcom.2018.06.036
    [8]
    Wang N, Wang S, Gou X, et al. Alloying behavior and characterization of (CoCrFeNiMn)90M10 (M=Al, Hf) high-entropy materials fabricated by mechanical alloying[J]. Transactions of Nonferrous Metals Society of China,2022,32(7):2253−2265 doi: 10.1016/S1003-6326(22)65945-4
    [9]
    Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: challenges and prospects[J]. Materials Today,2016,19(6):349−362 doi: 10.1016/j.mattod.2015.11.026
    [10]
    刘欣宁, 徐少华, 王璇. Y对轴承钢上激光熔覆FeCoCrNi涂层结构和冲蚀磨损的影响[J]. 真空科学与技术学报,2021,41(6):534−538(in Chinese)

    Liu X N, Xu S H, Wang X. Effect of Y on the structure and erosion wear of laser-cladding FeCoCrNi coating on bearing steel[J]. Chinese Journal Vacuum Science and Technology,2021,41(6):534−538
    [11]
    Chen Y, Xu Z, Wang M, et al. A single-phase V0.5Nb0.5ZrTi refractory high-entropy alloy with outstanding tensile properties[J]. Materials Science and Engineering: A,2020,792:139774 doi: 10.1016/j.msea.2020.139774
    [12]
    Wu Y D, Cai Y H, Wang T, et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties[J]. Materials Letters,2014,130:277−280 doi: 10.1016/j.matlet.2014.05.134
    [13]
    Yao T T, Zhang Y G, Yang L, et al. A metastable Ti–Zr–Nb–Al multi-principal-element alloy with high tensile strength and ductility[J]. Materials Science and Engineering: A,2022,851:143646 doi: 10.1016/j.msea.2022.143646
    [14]
    Chen Y, Li Y, Cheng X, et al. The microstructure and mechanical properties of refractory high-entropy alloys with high plasticity[J]. Materials (Basel, Switzerland),2018,11(2):208
    [15]
    Liu Y, Zhang Y, Zhang H, et al. Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Si x high-entropy composites[J]. Journal of Alloys and Compounds,2017,694:869−876 doi: 10.1016/j.jallcom.2016.10.014
    [16]
    Zhang Y, Liu Y, Li Y, et al. Microstructure and mechanical properties of a refractory HfNbTiVSi0.5 high-entropy alloy composite[J]. Materials Letters,2016,174:82−85 doi: 10.1016/j.matlet.2016.03.092
    [17]
    Guo N N, Wang L, Luo L S, et al. Microstructure and mechanical properties of refractory high entropy (Mo0.5NbHf0.5ZrTi)BCC/M5Si3 in-situ compound[J]. Journal of Alloys and Compounds,2016,660:197−203 doi: 10.1016/j.jallcom.2015.11.091
    [18]
    Otto F, Yang Y, Bei H, et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys[J]. Acta Materialia,2013,61(7):2628−2638 doi: 10.1016/j.actamat.2013.01.042
    [19]
    王海艳, 孙旭, 王培芹, 等. 真空自耗熔炼制备Ti-22V-10Cr-2Zn-xY合金的组织和力学性能分析[J]. 真空科学与技术学报,2020,40(7):653−657(in Chinese)

    Wang H Y, Sun X, Wang P Q, et al. Property modification of vacuum consumption-molten Ti-V-Cr alloy by Y-Doping[J]. Chinese Journal Vacuum Science and Technology,2020,40(7):653−657
    [20]
    邓彦波, 刘玮. 真空电弧熔炼轮毂用AlCrFeCuNi-xB高强合金温氧化性能[J]. 真空科学与技术学报,2020,40(11):1070−1074(in Chinese)

    Deng Y B, Liu Wei. Oxidation resistance of AlCrFeCuNi alloy modified by B-Doping in vacuum Arc-Melting[J]. Chinese Journal Vacuum Science and Technology,2020,40(11):1070−1074
    [21]
    He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties[J]. Acta Materialia,2016,102:187−196 doi: 10.1016/j.actamat.2015.08.076
    [22]
    Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions,2005,46(12):2817−2829 doi: 10.2320/matertrans.46.2817
    [23]
    Zhang S, Wang Z, Yang H J, et al. Ultra-high strain-rate strengthening in ductile refractory high entropy alloys upon dynamic loading[J]. Intermetallics,2020,121:106699 doi: 10.1016/j.intermet.2020.106699
    [24]
    George E P, Curtin W A, Tasan C C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms[J]. Acta Materialia,2020,188:435−474 doi: 10.1016/j.actamat.2019.12.015
    [25]
    杨雨茜. 轧制变形对CrMnFeCoNiAl0.6高熵合金组织与性能的影响[D]. 哈尔滨工业大学, 2022(in Chinese)

    Yang Y X. Effect of rolling deformation on microstructure and properties of CrMnFeCoNiAl0.6 High-entropy alloy[D]. Harbin Institute of Technology, 2022
    [26]
    杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 57(4): 385–392(in Chinese)

    Yang Y, He Q F. Lattice distortion in high-entropy alloys[J]. Acta Metallurgica Sinica, 57(4): 385–392
    [27]
    Tsakiropoulos P. On Nb silicide based alloys: alloy design and selection[J]. Materials (Basel, Switzerland),2018,11(5):844
    [28]
    Fuller C B, Seidman D N, Dunand D C. Mechanical properties of Al(Sc, Zr) alloys at ambient and elevated temperatures[J]. Acta Materialia,2003,51(16):4803−4814 doi: 10.1016/S1359-6454(03)00320-3
    [29]
    Ren Y, Wu H, Liu B, et al. A novel L12-strengthened AlCoCuFeNi high-entropy alloy with both high hardness and good corrosion resistance[J]. Materials Letters,2023,331:133339 doi: 10.1016/j.matlet.2022.133339
  • Related Articles

    [1]JIANG Bin, FU Si, LI Zhengbo, CAO Yundong. Vacuum Arc Interruption Performance at Different Moments of Rotational Engagement[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2025, 45(2): 154-163. DOI: 10.13922/j.cnki.cjvst.202408002
    [2]AI Yang, FU Si, LI Zhengbo, CAO Yundong. The Influence of Electrode Rotational Interruption Method on Vacuum Arc Morphology and Electrode Surface Erosion[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2024, 44(12): 1098-1107. DOI: 10.13922/j.cnki.cjvst.202407019
    [3]FENG Xiangxiang, ZHANG Zhaohui, HE Yangyu, JIA Xiaotong, WANG Qiang, LIU Ya, CHENG Xingwang, LIU Di. Improvement of Deformation Induced Precipitation Phase on Strength and Plasticity of Ti45Zr40Al5Nb5V5 Lightweight High Entropy Alloy[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2024, 44(8): 679-686. DOI: 10.13922/j.cnki.cjvst.202403022
    [4]LIU Jianmin, JIANG Caiwei, HU Xianjun, GU Ye. Control Process of Manganese and Oxygen Content in Melting Ultra-high Manganese Steel by Vacuum Induction Furnace[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY. DOI: 10.13922/j.cnki.cjvst.202408011
    [5]JI Liujie, YAN Shengnan, QIN Mian. Characterization of Ti-6Ni-3Mo-1Sn Alloy Synthesized by Vacuum Arc Melting[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2021, 41(3): 296-300. DOI: 10.13922/j.cnki.cjvst.202005044
    [6]Yin Guanfei, Song Dongfang, Li Lianhui. Fabrication and Characterization of Carbon Fiber Reinforced A365 Alloy Composite[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2020, 40(8): 724-728. DOI: 10.13922/j.cnki.cjovst.2020.08.05
    [7]WANG Haiyan, SUN Xu, WANG Peiqin, JIANG Yunchun. Property Modification of Vacuum Consumption-Molten Ti-V-Cr Alloy by Y-Doping[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2020, 40(7): 653-657. DOI: 10.13922/j.cnki.cjovst.2020.07.11
    [8]Li Jinwei, Wang Zhihao. Characterization of Al2O3-Strengthened Cement Prepared by Vacuum Pressure Infiltration[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2020, 40(6): 581-585. DOI: 10.13922/j.cnki.cjovst.2020.06.16
    [9]Han Erfeng, Huang Rui, Liu Yang. Impact of B-Doping on Microstructures and Reinforcement of Solidified GH600 Alloy Melted by Vacuum Induction[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2020, 40(2): 153-157. DOI: 10.13922/j.cnki.cjovst.2020.02.09
    [10]Yan Tingwen, Xie Donghua, Chen Zhilei, Jiang Chunli, Hu Yin. Major Surface Impurities of Vacuum Arc Melted U3Si2 Bulk Material:An Experimental Study[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2019, 39(5): 441-446. DOI: 10.13922/j.cnki.cjovst.2019.05.14

Catalog

    Article views (115) PDF downloads (60) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return