Service No
Advanced Search
KOU Jie, GAO Xinglong, LI Song, FU Cheng. The Fluid-Solid Coupling Characteristics of Vacuum Pipeline Maglev Train[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2024, 44(7): 592-600. DOI: 10.13922/j.cnki.cjvst.202402003
Citation: KOU Jie, GAO Xinglong, LI Song, FU Cheng. The Fluid-Solid Coupling Characteristics of Vacuum Pipeline Maglev Train[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2024, 44(7): 592-600. DOI: 10.13922/j.cnki.cjvst.202402003

The Fluid-Solid Coupling Characteristics of Vacuum Pipeline Maglev Train

More Information
  • Received Date: February 05, 2024
  • Available Online: June 06, 2024
  • The interaction between the motion of a vacuum pipeline maglev train and the flow field inside the pipeline results in a highly unstable flow environment. At the same time, the characteristics of the train suspension operation will cause serious fluid-solid coupling effects between the train and the flow field. In this issue, a fluid-solid coupling dynamics theory was proposed. A numerical calculation model for the fluid-solid coupling was established to achieve real-time online interaction data of trains. The fluid-solid coupling characteristics of the vacuum pipeline maglev train were analyzed. Research results show that the flow field at the rear of the train is relatively complex, with multiple oblique shock waves and reflected waves. As the train runs relatively stably, the wave system at the top and the head of the train is relatively simpler. But it will undergo significant changes with the rain’s operation. The aerodynamic load on the train exhibits low-frequency periodic changes. A decrease in suspension stiffness leads to an increase in the amplitude of the aerodynamic load on the train and a decrease in the frequency. Under the suspension stiffness of 30 kN, the displacement and rotation amplitude of the train can reach 270 mm and 14 mrad. The aerodynamic load on the train shows an oscillating amplitude and an increasing trend over time. It will affect the safety of the train. The above research can provide theoretical guidance and analytical method reference for the study of vacuum tube maglev trains.

  • [1]
    Taylor, Catherine L, Hyde D J, et al. Hyperloop commercial feasibility analysis: High level overview[R]. United States Department of Transportation, 2016
    [2]
    刘加利, 张继业, 张卫华. 真空管道高速列车气动特性分析[J]. 机械工程学报,2013,49(22):137−143(in Chinese) doi: 10.3901/JME.2013.22.137

    Liu J L, Zhang J Y, Zhang W H. Analysis of aerodynamic characteristics of high-speed trains in the evacuated tube[J]. Journal of Mechanical Engineering,2013,49(22):137−143 doi: 10.3901/JME.2013.22.137
    [3]
    周晓, 张殿业, 张耀平. 真空管道中阻塞比对列车空气阻力影响的数值研究[J]. 真空科学与技术学报,2008,28(6):535−538(in Chinese)

    Zhou X, Zhang D Y, Zhang Y P. Numerical simulation of blockage rate and aerodynamic drag of high-speed train in evacuated tube transportation[J]. Chinese Journal of Vacuum Science and Technology,2008,28(6):535−538
    [4]
    Opgenoord M, Caplan P C. Aerodynamic design of the hyperloop concept[J]. AIAA Journal,2018,56(11):4261−4270 doi: 10.2514/1.J057103
    [5]
    王友彪, 宣言, 张俊博. 低真空管道交通系统列车气动阻力研究[J]. 中国铁路, 2023, (07): 53−59(in Chinese)

    Wang Y B, Xuan Y, Zhang J B. Train aerodynamic resistance in transportation system of low vacuum tube[J]. Chinese Railways, 2023, (07): 53−59
    [6]
    Kim T, Kim K, Kwon H. Aerodynamic characteristics of a tube train[J]. Journal of Wind Engineering and Industrial Aerodynamics, Aerospace Science and Technology,2011,99:1187−1196
    [7]
    Kyeong S J, Thi T G, Jihoon K, et al. Effects of compressible flow phenomena on aerodynamic characteristics in Hyperloop system[J]. Aerospace Science and Technology,2021,117:106970 doi: 10.1016/j.ast.2021.106970
    [8]
    张晓涵, 李田, 张继业, 等. 亚音速真空管道列车气动壅塞及激波现象[J]. 机械工程学报,2021(04):182−190(in Chinese)

    Zhang X H, L T, Zhang J Y, et al. Aerodynamic choked flow and shock wave phenomena of subsonic evacuated tube train[J]. Journal of Mechanical Engineering,2021(04):182−190
    [9]
    Oh J S, Kang T, Ham S, et al. Numerical analysis of aerodynamic characteristics of hyperloop system[J]. Energies,2019,12(3):1−17
    [10]
    Gillani S A, Panikulam V P, Sadasivan S, et al. CFD analysis of aerodynamic drag effects on vacuum tube trains[J]. Journal of Applied Fluid Mechanics,2019,12(1):303−309 doi: 10.29252/jafm.75.253.29091
    [11]
    Kang H, Jin Y, Kwon H, et al. A study on the aerodynamic drag of transonic vehicle in evacuated tube using computational fluid dynamics[J]. International Journal of Aeronautical and Space Sciences,2017,18(4):614−622 doi: 10.5139/IJASS.2017.18.4.614
    [12]
    Zhang Y. Numerical simulation and analysis of aerodynamic drag on a subsonic train in evacuated tube transportation[J]. Journal of Modern Transportation,2012,20(1):44−48 doi: 10.1007/BF03325776
    [13]
    Zhou P, Zhang J, Li T. Effects of blocking ratio and Mach number on aerodynamic characteristics of the evacuated tube train[J]. International Journal of Rail Transportation: 2019, 8(1): 27-44
    [14]
    Bao S, Hu X, Wang J, et al. Numerical study on the influence of initial ambient temperature on the aerodynamic heating in the tube train system[J]. Advances in Aerodynamics,2020,2(1):18 doi: 10.1186/s42774-020-00043-w
    [15]
    Zhou P, Zhang J, Li T, et al. Numerical study on wave phenomena produced by the super high-speed evacuated tube maglev train[J]. Journal of Wind Engineering and Industrial Aerodynamics,2019,190:61−70 doi: 10.1016/j.jweia.2019.04.003
    [16]
    Kim T K, Kim K H, Kwon H B. Aerodynamic characteristics of a tube train[J]. Journal of Wind Engineering & Industrial Aerodynamics,2011,99(12):1187−1196
    [17]
    胡啸, 邓自刚, 张银龙, 等. 真空管道磁浮交通管内波系时空分布特征[J]. 空气动力学学报,2022,40(6):146−154(in Chinese)

    Hu X, Deng Z G, Zhang Y L, et al. Characteristics of spatial and temporal distribution of wave system in evacuated tube maglev transportation[J]. Acta Aerodynamica Sinica,2022,40(6):146−154
    [18]
    Li T, Song J Y, Zhang X H, et al. Theoretical and numerical studies on compressible flow around a subsonic evacuated tube train[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,2022,236(15):8261−8271 doi: 10.1177/09544062221087826
    [19]
    周鹏, 李田, 张继业, 等. 真空管道超级列车激波簇结构研究[J]. 机械工程学报,2020,56(2):86−97(in Chinese) doi: 10.3901/JME.2020.02.086

    Zhou P, Li T, Zhang J Y, et al. Research on shock wave trains generated by the hyper train in the evacuated tube[J]. Journal of Mechanical Engineering,2020,56(2):86−97 doi: 10.3901/JME.2020.02.086
    [20]
    Zhou P, Zhang J. Aerothermal mechanisms induced by the super high-speed evacuated tube maglev train[J]. Vacuum,2020,173:109142 doi: 10.1016/j.vacuum.2019.109142
    [21]
    宋嘉源, 李田, 张继业. 真空管道列车动态运行气动特性研究[J]. 实验流体力学,2023,37(01):64−71(in Chinese)

    Song J Y, Li T, Zhang J Y. Research on aerodynamic characteristics of evacuated tube train in dynamic operation[J]. Journal of Experiments in Fluid Mechanics,2023,37(01):64−71
    [22]
    侯自豪. 高速管道列车流动结构和气动力/热特性[D]. 合肥: 中国科学技术大学, 2022(in Chinese)

    Hou Z H. Flow structures and aerodynamic force/heating characteristics of high-speed tube train[D]. He Fei: University of Science and Technology of China, 2022
    [23]
    王潇飞, 胡啸, 李宗澎, 等. 轨道结构对真空管道磁浮列车气动特性的影响[J]. 实验流体力学,2023,37(03):9−18(in Chinese)

    Wang X F, Hu X, Li Z P, et al. The effect of track structure on the aerodynamic characteristics of evacuated tube maglev train[J]. Journal of Experiments in Fluid Mechanics,2023,37(03):9−18
    [24]
    伊严严, 黄尊地, 周镇斌, 等. 二维管道列车交会激波特性分析[J]. 真空科学与技术学报,2023,43(4):350−360(in Chinese)

    Yi Y Y, Huang Z D, Zhou Z B, et al. Analysis of shock wave characteristics of two-dimensional pipeline train intersection[J]. Chinese Journal of Vacuum Science and Technology,2023,43(4):350−360
    [25]
    侯自豪, 毛凯, 朱雨建, 等. 低真空管道列车关键气动问题研究进展[J]. 空气动力学学报,2023,41:1−20(in Chinese)

    Hou Z H, Mao K, Zhu Y J, et al. Progresses in key aerodynamic problems of low-vacuum tube trains[J]. Acta Aerodynamica Sinica,2023,41:1−20
    [26]
    寇杰, 符澄, 高兴龙, 等. 真空管道列车流固耦合研究进展及关键技术分析[J]. 实验流体力学,2023,37(3):37−49(in Chinese)

    Kou J, Fu C, Gao X L, et al. Progress on fluid-solid coupling of vacuum pipeline train and analysis of key technology[J]. Journal of Experiments in Fluid Mechanics,2023,37(3):37−49
    [27]
    符澄, 寇杰, 高兴龙, 等, 一种磁浮飞行风洞磁浮平台气动与运动力学耦合分析方法: 中国发明专利, CN202310778115.2[P](in Chinese)

    Fu C, Kou J, Gao X L, et al. A coupled analysis method for aerodynamics and kinematics of maglev platform in a maglev flight wind tunnel. Chinese Invention Patent, CN202310778115.2[P]

Catalog

    Article views (68) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return