Citation: | LI Xinghui, FENG Jinjun. Reviews on Vacuum Nano-Diodes and Nano-Triodes[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2024, 44(9): 749-758. DOI: 10.13922/j.cnki.cjvst.202401028 |
Vacuum nano-diodes and nano-triodes have basic functions similar to traditional vacuum tubes, but can be manufactured by the most advanced micro-fabricating line to achieve small size, light weight and high integration, which makes them a rapid development in the past decade. The origin, development process and state-of-the-art of vacuum nano-diodes and nano-triodes are reviewed. Typical nanoscale vacuum devices with lateral structure, vertical structure and gate-all-around structure are introduced, and their strengths and weaknesses are analyzed. Silicon devices are most compatible with the mature micro-fabrication process, but the devices based on metals or wide band-gap semiconductors, such as silicon carbide and gallium nitride, have better electrical properties, higher temperature resistance and stronger radiation endurance. Although the developing vacuum nano-diodes and nano-triodes still cannot compete with solid-state integrated circuits in most regular applications, they are attracting more attention and are expected to be employed in harsh conditions with high temperatures or strong radiations.
[1] |
Gilmour A S, Ebrary I. Klystrons, travelling wave tubes, magnetrons, crossed-field amplifiers, and gyrotrons[M]. Norwood, MA, USA: Artech House, 2011
|
[2] |
Pan P, Tang Y, Bian X, et al. A G-band traveling wave tube with 20W continuous wave output power[J]. IEEE Electron Device Lett,2020,41:1833−1836 doi: 10.1109/LED.2020.3032562
|
[3] |
Barbour E. The cool sound of tubes[J]. IEEE Spectrum,1998,35:24−35
|
[4] |
Symons R S. Tubes: still vital after all these years[J]. IEEE Spectrum,1998,35:52−63
|
[5] |
Kim H K. Vacuum transistors for space travel[J]. Nature Electronics,2019,2:374−375 doi: 10.1038/s41928-019-0306-2
|
[6] |
Shoulders K R. Microelectronics using electron-beam-activated machining techniques[J]. Advances in Computers,1961,2:135−138
|
[7] |
Spindt C A. A thin-film field-emission cathode[J]. J Appl Phys,1968,39:3504−3505 doi: 10.1063/1.1656810
|
[8] |
Spindt C A, Brodie I, Hunphrey L. physical properties of thin film field emission cathode with molybdenum cones[J]. J Appl Phys,1976,47:5248−5263 doi: 10.1063/1.322600
|
[9] |
Gray H F, Campisi G J, Greene R F, et al. A vacuum field effect transistor using silicon field emitter arrays[C]. International Electron Devices Meeting, USA, 1986
|
[10] |
Han J W, Oh J S, Meyyappan M. Vacuum Nanoelectronics: Back to the future? - gate insulated nanoscale vacuum channel transistor[J]. Appl Phys Lett,2012,100:213505 doi: 10.1063/1.4717751
|
[11] |
Srisonphan S, Jung Y, Kim H. Metal-oxide-semiconductor field-effect transistor with a vacuum channel[J]. Nature Nanotech,2012,7:504−508 doi: 10.1038/nnano.2012.107
|
[12] |
Stoner B R, Glass J T. Nothing is like a vacuum[J]. Nature Nanotechnology,2012,7:485−487 doi: 10.1038/nnano.2012.130
|
[13] |
Feng J, Li X, Hu J, et al. General vacuum electronics[J]. Journal of Electromagnetic Engineering and Science,2020,20:1−8 doi: 10.26866/jees.2020.20.1.1
|
[14] |
Gautam R, Saxena M, Gupta R S, et al. Gate all around MOSFET with vacuum gate dielectric for improved hot carrier reliability and RF performance[J]. IEEE Transactions on Electron Devices,2013,60:1820−1827
|
[15] |
Subramanian K, Kang W P, Davidson J L, et al. A review of recent results on diamond vacuum lateral field emission device operation in radiation environments[J]. Microelectron Eng,2011,88:2924−2929 doi: 10.1016/j.mee.2011.03.161
|
[16] |
Higuchi T, Maisenbacher L, Liehl A, et al. A nanoscale vacuum-tube diode triggered by few-cycle laser pulses[J]. Appl Phys Lett,2015,106:051109 doi: 10.1063/1.4907607
|
[17] |
Xu J, Wang Q, Tao Z, et al. High-quality and stable electron emission device with sub-30-nm aligned nanogap arrays[J]. IEEE Trans Electron Devices,2017,64:2364−2368 doi: 10.1109/TED.2017.2673853
|
[18] |
Xu J, Gu Z, Yang W, et al. Graphene-based nanoscale vacuum channel transistor[J]. Nanoscale Res Lett,2018,13:311 doi: 10.1186/s11671-018-2736-6
|
[19] |
Chang W T, Chuang T Y, et al. Metal-based asymmetric field emission diodes operated in the air[J]. Microelectronic Engineering,2020,232:111418 doi: 10.1016/j.mee.2020.111418
|
[20] |
Chang W T, Cheng M C, Chuang T Y, et al. Field emission air-channel devices as a voltage adder[J]. Nanomaterials,2020,10:2378 doi: 10.3390/nano10122378
|
[21] |
Mishra M K, Dubey V, Mishra P M, et al. MEMS technologies: a review[J]. J Eng Res Rep,2019,4:1−24
|
[22] |
Jones W M, Lukin D, Scherer A. Ultra-low turn-on field emission devices characterized at atmospheric pressures and high temperatures[C]. IEEE International Vacuum Nanoelectronics Conference, 2016
|
[23] |
Guo X, Xun Q, Li Z, et al. Silicon carbide converters and mems devices for high-temperature power electronics: a critical review[J]. Micromachines,2019,10:406 doi: 10.3390/mi10060406
|
[24] |
Neudeck P G, Okojie R S, Chen L Y. High-temperature electronics-a role for wide bandgap semiconductors? [J]. Proc. IEEE 2002, 90 (6): 1065−1076
|
[25] |
Liu M, Li T, Wang Y. SiC emitters for nanoscale vacuum electronics: a systematic study of cathode-anode gap by focused ion beam etching[J]. J Vac Sci Technol B,2017,35:031801 doi: 10.1116/1.4979049
|
[26] |
Zhao D S, Liu R, Fu K, et al. An Al0.25Ga0.75N/GaN lateral field emission device with a nano void channel[J]. Chin Phys Lett,2018,35:114−117
|
[27] |
Sapkota K R, Leonard F, Talin A A, et al. Ultralow voltage GaN vacuum nanodiodes in air[J]. Nano Lett,2021,21:1928−1934 doi: 10.1021/acs.nanolett.0c03959
|
[28] |
Wang G T, Sapkota K R, Talin A A, et al. Ultra-low voltage GaN vacuum nanoelectronics[C]. 2022 Compound Semiconductor Week, 2022
|
[29] |
Bhattacharya R, Turchetti M, Keathley P D, et al. Long term field emission current stability characterization of planar field emitter devices[J]. J Vac Sci Technol B,2021,39:053201
|
[30] |
Liu M, Fu W, Yang Y, et al. Excellent field emission properties of VO2 (A) nanogap emitters in air[J]. Appl Phys Lett,2018,112:093104 doi: 10.1063/1.4996370
|
[31] |
Chen Y Q, Hu Y Q, Zhao J Y, et al. Topology optimization-based inverse design of plasmonic nanodimer with maximum near-field enhancement[J]. Advanced Functional Materials,2020,30(23):2000642 doi: 10.1002/adfm.202000642
|
[32] |
Zheng M J, Yang Y, Zhu D, et al. Enhancing plasmonic spectral tunability with anomalous material dispersion[J]. Nano Lett,2021,21(1):91−98 doi: 10.1021/acs.nanolett.0c03293
|
[33] |
曾沛, 舒志文, 陈艺勤, 等. 宽束离子束刻蚀快速加工金属纳米间隙结构[J]. 光学精密工程,2023,31(1):109−118(in Chinese)
Zeng P, Shu Z, Chen Y, et al. Rapid fabrication of metallic nanogap structures by shower ion beam etching[J]. Optics and Precision Engineering,2023,31(1):109−118
|
[34] |
Park S S, Park D I, Hahm S H, et al. Fabrication of a lateral field emission triode with a high current density and high transconductance using the local oxidation of the polysilicon layer[J]. IEEE Transactions on Electron Devices,1999,46:1283−1289 doi: 10.1109/16.766899
|
[35] |
Subramanian K, Kang W P, Davidson J L. Nanocrystalline diamond lateral vacuum microtriode[J]. Appl Phys Lett,2008,93:203511 doi: 10.1063/1.3036008
|
[36] |
Pescini L L, Tilke A, Blick R H, et al. Nanoscale lateral field-emission triode operating at atmospheric pressure[J]. Adv Mater,2001,13:1780−1783 doi: 10.1002/1521-4095(200112)13:23<1780::AID-ADMA1780>3.0.CO;2-E
|
[37] |
Chang W T, Pao P H. Field electrons intercepted by coplanar gates in nanoscale air channel[J]. IEEE Trans Electron Devices,2019,66:3961−3966 doi: 10.1109/TED.2019.2928545
|
[38] |
Kim J, Kim J, Oh H, et al. Design guidelines for nanoscale vacuum field emission transistors[J]. J Vac Sci Technol B,2016,34:042201 doi: 10.1116/1.4944687
|
[39] |
Han J W, Meyyappan M. The device made of nothing[J]. IEEE Spectrum,2014,51:30−35
|
[40] |
Han J W, Oh J S, Meyyappan M. Cofabrication of vacuum field emission transistor (VFET) and MOSFET[J]. IEEE Trans Nanotechnol,2014,13:464−468 doi: 10.1109/TNANO.2014.2310774
|
[41] |
Nirantar S, Ahmed T, Ren G, et al. Metal-air transistors: semiconductor-free field-emission air-channel nanoelectronics[J]. Nano Lett,2018,18:1−23 doi: 10.1021/acs.nanolett.7b04982
|
[42] |
Spindt C A, Holland C E, Rosengreen A, et al. Field-emitter arrays for vacuum microelectronics[J]. IEEE Trans Electron Devices,1991,38:2355−2363 doi: 10.1109/16.88525
|
[43] |
李兴辉, 白国栋, 李含雁, 等. Spindt阴极制作中剥离层的研究[J]. 真空科学与技术学报,2013,33(4):303−308(in Chinese)
Li X, Bai G, Li H, et al. Study of lift off layers in Spindt cathode fabrication[J]. Chinese Journal of Vacuum Science and Technology,2013,33(4):303−308
|
[44] |
Hirano T, Kanemaru S, Tanoue H, et al. Fabrication of a new Si field emitter tip with metal-oxide-semiconductor field-effect transistor (MOSFET) structure[J]. Japanese Journal of Applied Physics,1996,35:6637−6640 doi: 10.1143/JJAP.35.6637
|
[45] |
Shao W, Ding M, Chen C, et al. Micro-gated-field emission arrays with single carbon nanotubes grown on Mo tips[J]. Applied Surface Science,2007,252:7559−7562
|
[46] |
Bozler C O, Harris C T, Rabe S, et al. Arrays of gated field-emitter cones having 0.32 μm tip-to-tip spacing[J]. J Vac Sci Technol B,1994,12:629−632 doi: 10.1116/1.587401
|
[47] |
Driskill-Smith A A G, Hasko D G, Ahmed H. Nanoscale field emission structures for ultra-low voltage operation at atmospheric pressure[J]. Appl Phys Lett,1997,71:3159−3161 doi: 10.1063/1.120276
|
[48] |
Driskill-Smith A A G, Hasko D G, Ahmed H. The “nanotriode”: a nanoscale field-emission tube[J]. Appl Phys Lett,1999,75(18):2844−2847
|
[49] |
Han P, Li X, Cai J, et al. Vertical nanoscale vacuum channel triodes based on the material system of vacuum electronics[J]. Micromachines,2023,14:346 doi: 10.3390/mi14020346
|
[50] |
Shen Z, Wang X, Wu S L, et al. A new kind of vertically aligned field emission transistor with a cylindrical vacuum channel[J]. Vacuum,2017,137:163−168 doi: 10.1016/j.vacuum.2017.01.002
|
[51] |
Park I J, Jeon S G, Shin C. A new slit-type vacuum-channel transistor[J]. IEEE Trans. Electron Devices,2014,61:4186−4191 doi: 10.1109/TED.2014.2361912
|
[52] |
Chang W T, Hsu H J, Pao P H. Vertical field emission air-channel diodes and transistors[J]. Micromachines,2019,10:858 doi: 10.3390/mi10120858
|
[53] |
Han J W, Seol M L, Moon D I, et al. Nanoscale vacuum channel transistors fabricated on silicon carbide wafers[J]. Nat Electron,2019,2:405−411 doi: 10.1038/s41928-019-0289-z
|
[54] |
Liu M, Liang S, Shi D, et al. An emission stable vertical air channel diode by a low-cost and IC compatible BOE etching process[J]. Nanoscale,2021,13:5693−5699 doi: 10.1039/D0NR08997D
|
[55] |
Wei Y, Zhao H, Zhao J, et al. GaN nanoscale air channel devices with mA-level output by IC compatible processes [C]. 2022 International Vacuum Nanoelectronics Conference, 2022
|
[56] |
Han J W, Seol M L, Meyyappan M. A nanoscale vacuum field emission gated diode with an umbrella cathode[J]. Nanoscale Adv,2021,3:1725−1729 doi: 10.1039/D1NA00004G
|
[57] |
Singh N, Agarwal A, Bera L K, et al. High-performance fully depleted silicon nanowire (diameter≤5 nm) gate-all-around CMOS devices[J]. IEEE Electron Device Lett,2006,27:383−385 doi: 10.1109/LED.2006.873381
|
[58] |
Han J W, Ahn J H, Choi Y K. Damage immune field effect transistors with vacuum gate dielectric[J]. J Vac Sci Technol B, 2011: 29
|
[59] |
Han J W, Moon D I, Oh J S, et al. Vacuum gate dielectric gate-all-around nanowire for hot carrier injection and bias temperature instability free transistor[J]. Appl Phys Lett,2014,104:253506 doi: 10.1063/1.4885595
|
[60] |
Han J W, Moon D I, Meyyappan M. Nanoscale vacuum channel transistor[J]. Nano Letters,2017,17:2146−2151 doi: 10.1021/acs.nanolett.6b04363
|
[1] | HE Ziyang, FAN Haitao, BI Hailin, WANG Xudi, YANG Jiuzhong. Simulation and Design of the Gas Filtering System in the Synchrotron Bend-Magnet Vacuum Ultraviolet Beamline[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2025, 45(3): 171-179. DOI: 10.13922/j.cnki.cjvst.202410013 |
[2] | LIU Xiaoming, BI Zhenjiang, CHEN Hai, LI Peiyuan, LIU Yixiong. Analysis of Magnetic Blowing Characteristics and Breakdown Resistance Performance of Vacuum Interrupter Considering Interval Uncertainty[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY. DOI: 10.13922/j.cnki.cjvst.202409013 |
[3] | SUN Ziwei, JING Zhengbiao, RAN Longjiao. The Wear Resistance of AlTiCrN Coating on Aluminum Alloy by Vacuum Arc Ion Plating[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2023, 43(7): 640-646. DOI: 10.13922/j.cnki.cjvst.202210011 |
[4] | LIU Junnan, LI Bo, JIN Limin, CHEN Ming, ZHANG Min, ZHU Wanqian, XUE Song. Vacuum System Design for BL11B Front End of SSRF[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2022, 42(12): 914-919. DOI: 10.13922/j.cnki.cjvst.202207002 |
[5] | ZHANG Hang, WANG Guodong, YANG Qingxi, YU Zhihang, ZHANG Chengpeng, HUANG Jun, CHEN Changqi, CHEN Zhaoxi. Numerical Simulation of Heat Radiation Characteristics of East Plug-in Cryopump[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2022, 42(12): 901-907. DOI: 10.13922/j.cnki.cjvst.202208021 |
[6] | QIU Xiaopan, LIU Xin, JIANG Sheming, JIANG Guangrui, ZHANG Qifu. Influence of Substrate Temperature on the Microstructure and Properties of Zinc Coatings Deposited by Vacuum Thermal Evaporation[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2021, 41(10): 946-951. DOI: 10.13922/j.cnki.cjvst.202011032 |
[7] | Feng Haikao, Zhang Miao, Gu Ning. Vacuum and Nano Cryopreservation Technology[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2020, 40(11): 1003-1011. DOI: 10.13922/j.cnki.cjovst.2020.11.01 |
[8] | Qiu Xiaopan, Liu Xin, Liu Qiuyuan, Jiang Sheming, Zhang Qifu. Effect of Annealing on Corrosion Resistance of Zn-Mg Coatings Deposited by Vacuum Plating[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2019, 39(6): 460-465. DOI: 10.13922/j.cnki.cjovst.2019.06.02 |
[9] | Long Minggang, Wu Shengli, Liu Yiwei, Zhang Jingtao. Fabrication and Properties of Vacuum Field Emission Triode with Nanoscale Channel[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2019, 39(5): 414-419. DOI: 10.13922/j.cnki.cjovst.2019.05.10 |
[10] | Wang Hang, Shi Jiaming, Zhao Dapeng, Liu Ruihuang. Novel Optical Multilayered Coatings with Characteristic Reflectivity of Visible,Near Infrared and Thermal Infrared Bands Surround by Green Vegetation[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2019, 39(2): 140-144. DOI: 10.13922/j.cnki.cjovst.2019.02.09 |