Citation: | CHEN Jiahui, ZHOU Zhenyu, WENG Ming, CAO Meng. Effect of the TE11 and TE21 Modes in the Circular Waveguide TM01 Mode Converter on the Coupling Degree of the Circular Waveguide Coupler[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2024, 44(6): 492-502. DOI: 10.13922/j.cnki.cjvst.202401023 |
In order to accurately measure the coupling degree of the circular waveguide coupler, the influence of TE11 and TE21 modes on the coupling degree of the circular waveguide TM01 mode converter is studied in this paper. According to the characteristics of TM01, TE11 and TE21 mode field distribution in a circular waveguide, the influence of TE11 or TE21 mode content on coupling degree dispersion is studied by CST simulation. The influence of the relative angle between two mode converters on the mode in the coupler and the coupling degree dispersion is studied by simulation and experimental measurement. The results show that the dispersion of coupling degree increases with the increase of TE11 or TE21 mode content in couplers. When the coupling degree is measured with a rectangular TE10 to circular waveguide TM01 mode converter, the dispersion is large, and a small amount of TE21 mode will appear in the coupler when the relative angle between the two mode converters is 0º or 180º, while a small amount of TE11 mode will appear in the coupler when the relative angle is 90º or 270º. When the coupling degree is measured by the coaxial TEM to circular waveguide TM01 mode converter, there is almost no TE11 mode and TE21 mode in the coupler, and the coupling degree is less dispersed. Comparing the simulation and experiment results of two different types of circular waveguide TM01 mode converters in coupling degree measurement, it is concluded that using the average coupling degree can better eliminate the coupling degree dispersion and reflect the real coupling degree of couplers. The research provides a new test method and basis for accurately calibrating the coupling degree of couplers.
[1] |
孙钧, 胡咏梅, 张立刚, 等. 圆波导定向耦合器在高功率微波测量中的应用[J]. 强激光与粒子束,2014,26(06):192−195(in Chinese) doi: 10.11884/HPLPB201426.063040
Sun J, Hu Y M, Zhang L G, et al. Application of circular waveguide couplers in high power microwave measurement[J]. High Power Laser and Particle Beams,2014,26(06):192−195 doi: 10.11884/HPLPB201426.063040
|
[2] |
张立刚, 宋志敏, 李小泽, 等. X波段宽带圆波导耦合器设计[J]. 现代应用物理,2015,6(02):98−101(in Chinese)
Zhang L G, Song Z M, Li X Z, et al. Design of a broad band circular waveguide coupler at X-band[J]. Modern Applied Physics,2015,6(02):98−101
|
[3] |
Wang W X, Gong Y B, Yu G F, et al. Mode discriminator based on mode-selective coupling[J]. IEEE Transactions on Microwave Theory and Techniques,2003,51(1):55−63 doi: 10.1109/TMTT.2002.806947
|
[4] |
王文祥. 高功率微波功率、频率和模式的测量[J]. 真空电子技术,2019(5):70−88(in Chinese)
Wang W X. Power, frequency and modes measurement of high-power microwave[J]. Vacuum Electronics,2019(5):70−88
|
[5] |
张立刚, 谭维兵, 李小泽, 等. 模式抑制器在Ku波段在线测量系统中的应用[J]. 太赫兹科学与电子信息学报,2020,18(01):112−115(in Chinese)
Zhang L G, Tan W B, Li X Z, et al. Mode suppressor applied in Ku-band online measurement system[J]. Journal of Terahertz Science and Electronic Information Technology,2020,18(01):112−115
|
[6] |
白珍. 过模O型Cerenkov高功率微波源输出模式诊断方法研究[D]. 长沙: 国防科学技术大学, 2012(in Chinese)
Bai Z. Research on the diagnosis methods of the output modes generated by overmoded O-type Cerenkov High Power Microwave source[D]. Changsha: National University of Defense Technology, 2012
|
[7] |
王文祥, 徐梅生, 余国芬. 波导系统模式的分析与鉴别[J]. 真空电子技术,1993(01):1−6(in Chinese)
Wang W X, Xu M S, Yu G F. Mode analysis and distinction of waveguide system[J]. Vacuum Electronics,1993(01):1−6
|
[8] |
彭升人. 高功率微波TM0n混合模式诊断与转换发射技术研究[D]. 长沙: 国防科学技术大学, 2016(in Chinese)
Peng S R. Investigation on diagnosis and conversion transmission techniques of TM0n mixed modes for high-power microwave applications[D]. Changsha: National University of Defense Technology, 2016
|
[9] |
张治强. 高功率微波圆极化辐射技术研究[D]. 西安: 西安电子科技大学, 2014(in Chinese)
Zhang Z Q. Circularly polarized radiation techniques for high-power microwaves[D]. Xi’an: Xidian University, 2014
|
[10] |
Li X M, Li X Q, Liu Q X, et al. High power overmode 90° bent waveguide for circular TM01 and coaxial TEM mode transmission[J]. Progress in Electromagnetics Research M,2017(60):189−196
|
[11] |
陈宇, 舒挺, 郑世勇. 圆波导TE11主模辐射方向性系数的误差分析[J]. 强激光与粒子束,2006(03):431−434(in Chinese)
Chen Y, Shu T, Zheng S Y. Error analysis of radiation directivity of TE11 main mode of circular waveguide[J]. High Power Laser and Particle Beams,2006(03):431−434
|
[12] |
崔新红. 新型高功率微波圆波导模式转换器设计方法的研究[D]. 合肥: 中国科学技术大学, 2020(in Chinese)
Cui X H. Study on the novel design method of high-power circular waveguide mode converter[D]. Hefei: University of Science and Technology of China, 2020
|
[13] |
Cui X H, Wang G, Jiang T Y, et al. High-efficiency, broadband converter from a rectangular waveguide TE10 mode to a circular waveguide TM01 mode for overmoded device measurement[J]. IEEE Access,2018,6:14996−15003 doi: 10.1109/ACCESS.2018.2815530
|
[14] |
雷乐, 周振宇, 翁明, 等. S波段矩形波导TE10 -圆波导TM01模式转换器的研究[J]. 真空科学与技术学报,2023,43(06):537−546(in Chinese)
Lei L, Zhou Z Y, Weng M, et al. S-band rectangular waveguide TE10-circular waveguide TM01 mode converter[J]. Chinese Journal of Vacuum Science and Technology,2023,43(06):537−546
|
[15] |
Bykov D N, Bykov N M, Klimov A I, et al. A wideband converter of the main mode of the coaxial line into the lowest symmetric mode of a circular waveguide[J]. Instrum Exp Tech,2008,51:724−728 doi: 10.1134/S0020441208050126
|
[16] |
Patel S, Jaiswal R, Singh R, et al. Design and development of mode launcher for TM01 mode in circular waveguide in S-band[C]//2017 IEEE MTT-S International Microwave and RF Conference (IMaRC). Piscataway, NJ, USA: IEEE, 2017: 279−282
|
[17] |
Kumar J, Singh R, Anitha V P. Prototype TM01 mode launcher by using Pagoda-shaped geometry in circular waveguide for microwave plasma interaction experiments at SYMPLE[J]. International Journal of RF and Microwave Computer-Aided Engineering,2019,29(12):e21957
|
[18] |
Chittora A, Singh S, Sharma A, et al. Design of wideband coaxial-TEM to circular waveguide TM01 mode transducer[C]//2016 10th European Conference on Antennas and Propagation (EuCAP). Piscataway, NJ, USA: IEEE, 2016: 1−4
|
[19] |
周振宇, 陈家辉, 翁明, 等. 同轴横电磁波转圆波导横磁波01模式的转换器研究[J]. 西安交通大学学报,2023,57(11):171−180, 205(in Chinese)
Zhou Z Y, Chen J H, Weng M, et al. Research of mode converter from coaxial transverse electromagnetic wave to circular waveguide TM01[J]. Journal of Xi’an Jiaotong University,2023,57(11):171−180, 205
|
[20] |
Mozharovskiy A, Churkin S, Arternenko A, et al. Wideband probe-type waveguide-to-microstrip transition for 28 GHz applications[C]//2018 48th European Microwave Conference (EuMC). Piscataway, NJ, USA: IEEE, 2018: 113−116
|
[21] |
Cui X H, Liu X L, Wang G, et al. Analysis method of circular waveguide TM01 mode converter on the basis of microwave network[C]//2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE). Piscataway, NJ, USA: IEEE, 2018: 1−4
|
[22] |
Xia L, Li J L, Ji Z, et al. An in-line coaxial-to-circular waveguide transition at X band[J]. Journal of Electrical Engineering,2020,71(01):55−59 doi: 10.2478/jee-2020-0008
|
[23] |
Xu Y, Mao Y, Luo Y, et al. A W-band rectangular waveguide TE10 to circular waveguide TE02 mode converter[J]. IEEE Transactions on Microwave Theory and Techniques,2021,69(6):3023−3029 doi: 10.1109/TMTT.2021.3074616
|
[24] |
王文祥. 微波工程技术[M]. 国防工业出版社, 2009(in Chinese)
Wang W X. Microwave engineering technology[M]. Beijing: National Defense Industry Press, 2009
|
[25] |
曹亦兵, 孙钧, 张黎军, 等. 一种高功率容量HPM耦合测量装置[J]. 现代应用物理,2016,7(01):31−34(in Chinese)
Cao Y B, Sun J, Zhang L J, et al. A high power capacity coupler for HPM measurement[J]. Modern Applied Physics,2016,7(01):31−34
|
[26] |
任杰, 翁明, 雷乐, 等. 用八孔耦合器识别TM01/TE11混模中TE11模式的方法[J]. 强激光与粒子束,2022,34(09):5−12(in Chinese)
Ren J, Weng M, Lei L, et al. Method for identifying TE11 mode in TM01/TE11 mixed mode system with eight-hole coupler[J]. High Power Laser and Particle Beams,2022,34(09):5−12
|