Service No
Advanced Search
LI Pingchuan, ZHANG Fan, ZHANG Zhenghao, LI Xiaobo, TANG Deli. Plasma Behavior and Distribution Characteristics of Argon Glow Discharge in Magnetron Sputtering Source[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2024, 44(6): 521-528. DOI: 10.13922/j.cnki.cjvst.202309008
Citation: LI Pingchuan, ZHANG Fan, ZHANG Zhenghao, LI Xiaobo, TANG Deli. Plasma Behavior and Distribution Characteristics of Argon Glow Discharge in Magnetron Sputtering Source[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2024, 44(6): 521-528. DOI: 10.13922/j.cnki.cjvst.202309008

Plasma Behavior and Distribution Characteristics of Argon Glow Discharge in Magnetron Sputtering Source

More Information
  • Received Date: September 14, 2023
  • Available Online: April 19, 2024
  • In this paper, a 3D Particle-in-Cell numerical simulation model of DC magnetron sputtering source based on an existing structure is built. By simulating plasma behavior and distribution characteristics of argon glow discharge in an existing magnetron sputtering source structure, information about target utilization efficiency and also power efficiency can be obtained. Analysis of ion trajectories, energy and incident angle distribution indicates that bombarding ion portion decreases from 80% to 67% with the discharge voltage increasing from 260 V to 340 V due to the spatial distribution of electric potential. Since ions can be accelerated both moving toward and away from the target, an over-high discharge voltage is not beneficial to increasing power efficiency. On the other hand, increasing discharge voltage facilitates ions to impact the target with higher mean kinetic energy, which is beneficial to increasing sputtering yield. Therefore, choosing a proper discharge voltage according to working pressure is an effective way to increase power efficiency. Since the reliability of the simulation model is verified by comparison of ion sputtering position distribution and target actual erosion profile, simulation and analyzing methods in this paper are useful for the optimization design of the magnetron sputtering source.

  • [1]
    Gu L, Lieberman M A. Axial distribution of optical emission in a planar magnetron discharge[J]. Journal of Vacuum Science & Technology A,1988,6:2960−2964
    [2]
    Wendt A E, Lieberman M A, Meuth H. Radial current distribution at a planar magnetron cathode[J]. Journal of Vacuum Science & Technology A,1988,6:1827−1831
    [3]
    Kusumoto Y, Iwata K. Numerical study of the characteristics of erosion in magnetron sputtering[J]. Vacuum,2004,74(3):359−365
    [4]
    Cramer N F. Analysis of a one-dimensional, steady-state magnetron discharge[J]. Journal of Physics D Applied Physics,1997,30(18):2573 doi: 10.1088/0022-3727/30/18/012
    [5]
    Bradley J W,Lister G. Model of the cathode fall region in magnetron discharges[J]. Plasma Sources Science & Technology,1997,6(4):524
    [6]
    Shon C H, Lee J K, Lee H J, et al. Velocity distributions in magnetron sputter[J]. IEEE Transactions on Plasma Science,1998,26(6):1635−1644 doi: 10.1109/27.747881
    [7]
    Shon C, Park J, Kang B, et al. Kinetic and Steady-State Properties of Magnetron Sputter with three-dimensional magnetic field[J]. Japanese Journal of Applied Physics,1999,38(7):4440−4449
    [8]
    Qiu Q, Li Q, Su J, et al. Magnetic field improvement in end region of rectangular planar DC magnetron based on particle simulation[J]. Plasma Science and Technology,2008,10(6):694−700 doi: 10.1088/1009-0630/10/6/08
    [9]
    Qiu Q, Li Q, Su J, et al. Simulation to predict target erosion of planar DC magnetron[J]. Plasma Science and Technology,2008,10(5):581−587 doi: 10.1088/1009-0630/10/5/12
    [10]
    Sheridan T E, Goeckner M J, Goree J. Model of energetic electron transport in magnetron discharges[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films,1990,8(1):30−37
    [11]
    Nanbu K, Segawa S, Kondo S. Self-consistent particle simulation of three-dimensional dc magnetron discharge[J]. Vacuum,1996,47(6-8):1013−1016 doi: 10.1016/0042-207X(96)00114-5
    [12]
    Rogov A V, Kapustin Y V, Martynenko Y V. Factors determining the efficiency of magnetron sputtering. Optimization criteria[J]. Technical Physics,2015,60(2):283−291 doi: 10.1134/S1063784215020206
    [13]
    Geng S F, Qiu X M, Cheng C M, et al. Three-dimensional particle-in-cell simulation of discharge characteristics in cylindrical anode layer hall plasma accelerator[J]. Physics of Plasmas,2012,19(4):78
    [14]
    Geng S F, Tang D L, Wang C X, et al. Concentrated ion beam emitted from an enlarged cylindrical-anode-layer Hall plasma accelerator and mechanism[J]. Journal of Applied Physics,2013,113(113):78
    [15]
    Geng S F, Tang D L, Wang C X, et al. Breathing oscillations in enlarged cylindrical-anode-layer Hall plasma accelerator[J]. Journal of Applied Physics,2013,113(113):R1−97
    [16]
    Tang D L, Geng S F, Qiu X M, et al. Three-dimensional numerical investigation of electron transport with rotating spoke in a cylindrical anode layer Hall plasma accelerator[J]. Physics of Plasmas,2012,19:073519 doi: 10.1063/1.4740066
    [17]
    Anders A. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS)[J]. Journal of Applied Physics,2017,121(17):171101 doi: 10.1063/1.4978350
    [18]
    Britun N, Konstantinidis S, Belosludtsev A, et al. Quantification of the hysteresis and related phenomena in reactive HiPIMS discharges[J]. Journal of Applied Physics,2017,121(17):171905 doi: 10.1063/1.4977819
    [19]
    Hecimovic A, Corbella C, Maszl C, et al. Investigation of plasma spokes in reactive high power impulse magnetron sputtering discharge[J]. Journal of Applied Physics,2017,121(17):133302−661
    [20]
    Strijckmans K, Moens F, Depla D. Perspective: Is there a hysteresis during reactive High Power Impulse Magnetron Sputtering (R-HiPIMS)[J]. Journal of Applied Physics,2017,121(8):080901 doi: 10.1063/1.4976717
    [21]
    Ganesan R, Akhavan B, Partridge J G, et al. Evolution of target condition in reactive HiPIMS as a function of duty cycle: An opportunity for refractive index grading[J]. Journal of Applied Physics,2017,121(17):171909 doi: 10.1063/1.4977824
    [22]
    Nieter C, Cary J R. VORPAL: A versatile plasma simulation code[J]. Journal of Computational Physics,2004,196(2):448−473 doi: 10.1016/j.jcp.2003.11.004
    [23]
    Revel A, Mochalskyy S, Montellano I M, et al. Massive parallel 3D PIC simulation of negative ion extraction[J]. Journal of Applied Physics,2017,122(10):103302 doi: 10.1063/1.5001397
    [24]
    Benyoucef D, Yousfi M. Particle modelling of magnetically confined oxygen plasma in low pressure radio frequency discharge[J]. Physics of Plasmas,2015,22(1):4440−198
    [25]
    Shon C H, Lee J K. Modeling of magnetron sputtering plasmas[J]. Applied Surface Science,2002,192(1):258−269
    [26]
    Yamamura Y. A simple analysis of the angular dependence of light-ion sputtering[J]. Nuclear Instruments & Methods in Physics Research,1984,2(1-3):578−582
    [27]
    Yamamura Y, Tawara H. Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence[J]. Atomic data and nuclear data tables,1996,62:149−253 doi: 10.1006/adnd.1996.0005
    [28]
    Bohlmark J, Lattemann M, Gudmundsson J T, Ehiasarian A, Gonzalvo Y, Brenning N and Helmersson U. The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge[J]. Thin Solid Films,2006,515(4):1522−1526 doi: 10.1016/j.tsf.2006.04.051

Catalog

    Article views (100) PDF downloads (30) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return