Service No
Advanced Search
HUANG Xianghui, LIU Zhenzu, ZHANG Jingyuan, ZHANG Bei. Mechanism of the Influence of Field Emission on Corona Discharge at Microscale[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2024, 44(2): 146-155. DOI: 10.13922/j.cnki.cjvst.202307017
Citation: HUANG Xianghui, LIU Zhenzu, ZHANG Jingyuan, ZHANG Bei. Mechanism of the Influence of Field Emission on Corona Discharge at Microscale[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2024, 44(2): 146-155. DOI: 10.13922/j.cnki.cjvst.202307017

Mechanism of the Influence of Field Emission on Corona Discharge at Microscale

More Information
  • Received Date: July 31, 2023
  • Available Online: January 26, 2024
  • Based on the electric field enhancement effect of one-dimensional nanomaterials, field-ionized micro-corona devices can generate atmospheric pressure non-equilibrium micro-plasma, which is suitable for gas detection and biomedical fields with fast response and low power consumption. However, the corona discharge at the microscale is a local self-sustaining low-energy discharge, and the role and influence mechanism of its field emission are still unclear. Therefore, in this paper, based on the fluid-chemical mixing model, the F-N emission model is introduced and coupled to establish a two-dimensional microcorona discharge model for the N2-O2 gas mixture at room temperature and pressure. By comparing with the discharge model without field emission, the effect of field emission on the dynamic process of discharge under different spacing is explored. It is found that when the pin-plate spacing is reduced to 15 μm, the difference in the discharge process between the two models is very small, indicating that the discharge is dominated by the secondary electron emission mechanism, and when the spacing is reduced to 10 μm, the difference in the discharge intensity between the two models is nearly a factor of one, and the role and influence of field emission cannot be neglected; And through further dynamic analysis of electron density distribution, space electric field distribution, current density and other parameters, it is found that there is a chain influence law between field-induced emission, space collision ionization reaction and ion bombardment secondary electron emission.

  • [1]
    Shimizu K, Fukunaga H, Blajan M. Biomedical applications of atmospheric microplasma[J]. Current Applied Physics,2014,14(7):S154−S161
    [2]
    欧阳吉庭, 张宇, 秦宇. 微放电及其应用[J]. 高电压技术,2016,42(3):673−684(in chinese)

    Ouyang J T, Zhang Y, Qin Y. Micro-discharge and its applications[J]. High Voltage Engineering,2016,42(3):673−684
    [3]
    Kim J Y, Kaganovich I, Lee H C. Review of the gas breakdown physics and nanomaterial-based ionization gas sensors and their applications[J]. Plasma Sources Science & Technology,2022 ,31(3):33001
    [4]
    Dirk J, Franzke J, Manz A. Scaling and the design of miniaturized chemical-analysis systems[J]. Nature,2006,442(7101):374−380 doi: 10.1038/nature05059
    [5]
    Fu Y, Wang H, Zheng B, et al. Direct current microplasma formation around microstructure arrays[J]. Applied Physics Letters,2021,118(17):174101 doi: 10.1063/5.0046312
    [6]
    Yuan X, Tang J, Duan Y X. Microplasma technology and its applications in analytical chemistry[J]. Applied Spectroscopy Reviews,2011,46(7):581−605 doi: 10.1080/05704928.2011.604814
    [7]
    孟国栋, 折俊艺, 应琪, 等. 微米尺度气体击穿的数值模拟研究进展[J]. 电工技术学报,2022,37(15):3857−3875(in chinese)

    Meng G D, She J Y, Ying Q, et al. Research progress on numerical simulation of gas breakdown at microscale[J]. Transactions of China Electrotechnical Society,2022,37(15):3857−3875
    [8]
    牛海清, 徐乐平, 李小潇, 等. SF6气体正极性电晕放电特性仿真研究[J]. 高电压技术,2021,47(11):4063−4071(in chinese)

    Niu H Q, Xu L P, Li X X, et al. Simulation and study of positive corona characteristics in SF6 gas[J]. High Voltage Engineering,2021,47(11):4063−4071
    [9]
    廖瑞金, 刘康淋, 伍飞飞, 等. 棒-板电极直流负电晕放电过程中重粒子特性的仿真研究[J]. 高电压技术,2014,40(4):965−971(in chinese)

    Liao R J, Liu K L, Wu F F, et al. Simulative study on characteristic of heavy particles in negative bar-plate dc corona discharge[J]. High Voltage Engineering,2014,40(4):965−971
    [10]
    Fu Y, Peng Z, Verboncoeur J P. Gas breakdown in atmospheric pressure microgaps with a surface protrusion on the cathode [J]. Applied Physics Letters, 2018, 112(25)254102
    [11]
    王林华, 孙岩洲, 董克亮, 等. 微间隙气体放电击穿过程分析[J]. 电子器件,2020,43(6):1197−1202(in chinese) doi: 10.3969/j.issn.1005-9490.2020.06.002

    Wang L H, Sun Y Z, Dong K L, et al. Analysis of breakdown process of micro-gap gas discharge[J]. Chinese Journal of Electron Devices,2020,43(6):1197−1202 doi: 10.3969/j.issn.1005-9490.2020.06.002
    [12]
    Cejas E, Prevosto L, Minotti F O, et al. Cathode-sheath model for field emission sustained atmospheric pressure discharges[J]. Physics of Plasmas,2021,28(3):033506 doi: 10.1063/5.0035710
    [13]
    Li Y S, Sun Y Z, Wang L H, et al. Research on the characteristics of micro-spacing gas discharge at different pressures [J]. Chinese Journal of Vacuum Science and Technology, 2022, 42(01):75−81(李彦森, 孙岩洲, 王林华, 等. 不同气压下微间距气体放电特性分析[J]. 真空科学与技术学报, 2022, 42(01):75−81(in chinese)
    [14]
    陈芸, 孙岩洲, 李彦森, 等. 微间距气压对场致发射影响的分析与计算[J]. 电气工程学报,2023,18(1):251−257(in chinese) doi: 10.11985/2023.01.028

    Chen Y, Sun Y Z, Li Y S, et al. Analysis and calculation of the infuence of air pressure on field emission at micro-gap[J]. Journal of Electrical Engineering,2023,18(1):251−257 doi: 10.11985/2023.01.028
    [15]
    常泽洲, 孟国栋, 应琪, 等. 阴极曲率半径对微米尺度气隙击穿的影响规律研究[J]. 电工技术学报,2023,38(4):1032−1041(in chinese)

    Chang Z Z, Meng G D, Ying Q, et al. Study on the influence of cathode radius on the breakdown characteristics across microgaps in air[J]. Transactions of China Electrotechnical Society,2023,38(4):1032−1041
    [16]
    柴钰, 弓丽萍, 张晶园, 等. 微纳电离式矿井甲烷传感器安全放电及敏感机理仿真[J]. 电工技术学报,2019,34(23):10(in chinese)

    Chai Y, Gong L P, Zhang J Y, et al. Simulation of safe discharge and sensitive mechanism of micro-nano ionized mine methane sensor[J]. Transactions of China Electrotechnical Society,2019,34(23):10
    [17]
    柴钰, 张妮, 刘杰, 等. 微尺度下N2–O2电晕放电的动态特性二维仿真[J]. 物理学报,2020,69(16):10(in chinese) doi: 10.7498/aps.69.20200095

    Chai Y, Zhang N, Liu J, et al. Two-dimensional simulation of dynamic characteristics of N2–O2 corona discharge at micro scale[J]. Journal of Physics,2020,69(16):10 doi: 10.7498/aps.69.20200095
    [18]
    Kossyi I A, Kostinsky A Y, Matveyev A A, et al. Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures[J]. Plasma Sources Science and Technology,1992,1(3):207 doi: 10.1088/0963-0252/1/3/011
    [19]
    Pancheshnyi S, Nudnova M, Starikovskii A. Development of a cathode-directed streamer discharge in air at different pressures: Experiment and comparison with direct numerical simulation[J]. Phys. Rev. E,2005,71(1):016407 doi: 10.1103/PhysRevE.71.016407
    [20]
    Poggie J, Adamovich I, Bisek N, et al. Numerical simulation of nanosecond-pulse electrical discharges[J]. Plasma Sources Science and Technology,2013,22(1):015001
    [21]
    Liu X Q. Cathode electronics [M]. Beijng: Science Press, 1980(刘学悫 . 阴极电子学[M]. 科学出版社, 1980(in chinese)
    [22]
    王新庆, 王淼, 李振华. 单根纳米导线场发射增强因子的计算[J]. 物理学报,2005(03):1347−1351(in chinese) doi: 10.3321/j.issn:1000-3290.2005.03.060

    Wang X Q, Wang M, Li Z H. Calculation of the field emission enhancement factor for single nanowires[J]. Acta Physica Sinica,2005(03):1347−1351 doi: 10.3321/j.issn:1000-3290.2005.03.060
    [23]
    王党树, 邓翾, 刘树林, 等. 甲烷/空气混合气体在针板电极下的微间隙放电特性[J]. 电工技术学报,2023,38(13):3388−3399(in chinese)

    Wang D S, Deng X, Liu S L, et al. Microgap discharge characteristics of methane / air under the needle plate electrode[J]. Transactions of China Electrotechnical Society,2023,38(13):3388−3399
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (44) PDF downloads (12) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return