Citation: | SHU Mintao, WANG Guodong, XU Zhuangzhuang, YAO Jikai, QIAN Du. Simulation Study on Discharge Characteristics of Radio Frequency Ion Thruster with Iodine Working Medium[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2024, 44(2): 125-131. DOI: 10.13922/j.cnki.cjvst.202307002 |
Iodine, as a potential working medium in space thrusters, has attracted much attention in recent years. Unlike xenon, the discharge products of iodine working medium are more complex, containing small amounts of I−, I2+, I2+ and I3+. Although the content of polyvalent ions is small, it has a great influence on the working performance of thrusters. In this paper, a two-dimensional axisymmetric model is established based on plasma discharge, studying the effects of mass flow rate, RF power and background pressure on two main ionization products, I+ and I2+. When the mass flow rate ranges from 20 to 70 mL/min, I+ slightly decreases and I2+ slightly increases with the increase of mass flow rate. When the RF power ranges from 100 to 650 W, I+ increases rapidly with the increase of RF power, and I2+ decreases slightly. When the background pressure ranges from 0.001 to 0.1 Torr, I+ initially increases rapidly with the increase of background pressure and it begins to decrease at around p0= 0.015 Torr. I2+ has maintained a slow increase. Ignoring the influence of ionization loss, conducting a full factor design of experiment (DOE) of the three influencing factors. When the mass flow rate is 60 mL/min, the RF power is 150 W, and the background pressure is 0.015 Torr, obtaining the optimal product I2+:I+=0.204094, which is consistent with the simulation result I2+:I+=0.205069, and the error is 0.48%.
[1] |
Frisbee R H. Advanced space propulsion for the 21st century[J]. Journal of Propulsion and Power,2003,19(6):1129−1154 doi: 10.2514/2.6948
|
[2] |
王鑫龙. 射频离子微推进器的设计与实验研究[D]. 沈阳: 东北大学, 2013(in chinese)
Wang X L. The radio-frequency micro ion thruster design and experimental study[D]. Shenyang: Northeastern University, 2013
|
[3] |
Killinger R, Leiter H, Kukies R. RITA ion propulsion systems for commercial and scientific applications[C]//Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Cincinnati: AIAA, 2007
|
[4] |
刘辉, 牛翔, 李鑫, 等. 碘工质电推进技术研究综述[J]. 推进技术,2019,40(1):12−25(in chinese)
Liu H, Niu X, Li X, et al. Reviews on electrical propulsion technology using iodine alternatives[J]. Journal of Propulsion Technology,2019,40(1):12−25
|
[5] |
Dankanich J W, Szabo J, Pote B, et al. Mission and system advantages of iodine hall thrusters[C]//Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland: AIAA, 2014
|
[6] |
周长斌. 碘工质电推进储供系统设计及实验研究[D]. 上海: 上海交通大学, 2020(in chinese)
Zhou C B. Design and experimental study of Iodine propellant feed system for electric propulsion[D]. Shanghai: Shanghai Jiao Tong University, 2020
|
[7] |
张元哲, 韩先伟, 杨振宇, 等. 碘工质射频离子推力器栅极系统束流特性仿真[J]. 中国空间科学技术,2022,42(6):115−124(in chinese)
Zhang Y Z, Han X W, Yang Z Y, et al. Ion beam characteristics of iodine RF ion thruster optical system[J]. Chinese Space Science and Technology,2022,42(6):115−124
|
[8] |
Holste K, Gärtner W, Zschätzsch D, et al. Performance of an iodine-fueled radio-frequency ion-thruster[J]. The European Physical Journal D,2018,72(1):9 doi: 10.1140/epjd/e2017-80498-5
|
[9] |
Szabo J, Robin R. Iodine plasma species in a Hall Effect thruster plume[C]//Proceedings of the 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. San Jose: AIAA, 2013
|
[10] |
Kee R J, Coltrin M E, Glarborg P. Chemically reacting flow: theory and practice[M]. Hoboken: Wiley-Interscience, 2003
|
[11] |
Lieberman M A, Lichtenberg A J. Principles of plasma discharges and materials processing[M]. New York: Wiley, 1994
|
[12] |
颜能文, 郭宁, 谷增杰. 碘工质空间电推进系统关键技术分析[J]. 真空与低温,2018,24(5):332−337(in chinese) doi: 10.3969/j.issn.1006-7086.2018.05.008
Yan N W, Guo N, Gu Z J. Key technical analysis of iodine space electric propulsion system[J]. Vacuum and Cryogenics,2018,24(5):332−337 doi: 10.3969/j.issn.1006-7086.2018.05.008
|
[13] |
Grondein P, Lafleur T, Chabert P, et al. Global model of an iodine gridded plasma thruster[J]. Physics of Plasmas,2016,23(3):033514 doi: 10.1063/1.4944882
|
[14] |
Yang J H, Jia S X, Zhang Z H, et al. Performance of a 4 cm iodine-fueled radio frequency ion thruster[J]. Plasma Science and Technology,2020,22(9):094006 doi: 10.1088/2058-6272/ab891d
|
[15] |
王彪, 龚福君, 叶宇飞, 等. 气压对气体放电影响的实验探究[J]. 物理教学探讨,2006,24(23):51−53(in chinese)
Wang B, Gong F J, Ye Y F, et al. Experimental investigation on the effect of air pressure on gas discharge[J]. Journal of Physics Teaching,2006,24(23):51−53
|
[1] | GU Sendong, ZHAO Jipeng, MA Tianju, YU Bin, YANG Wenbo, YANG Xuehu, MA Yanlong, Li Ganggang, LI Xingda, ZHANG Xiao. Operational Characteristics of an Iodine Propellant Feed System for Electric Propulsion[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2023, 43(7): 600-608. DOI: 10.13922/j.cnki.cjvst.202302006 |
[2] | CHEN Changhong, WANG Meifang, SUN Yijun, SUN Ying, SUN Jiabao, LIU Yanhua, LIU Zhi, XIE Shijian. Operation Parameters of Inductively Coupled C4F6/SF6 Plasma Etching Process for Si Substrate Material[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2023, 43(1): 36-41. DOI: 10.13922/j.cnki.cjvst.202207018 |
[3] | XU Zongqi, TIAN Leichao, YE Zhanwen, WANG Pingyang, HANG Guanrong. Design and Experimental Research on Principle Prototype of Iodine Hall Thruster[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2022, 42(6): 456-461. DOI: 10.13922/j.cnki.cjvst.202112003 |
[4] | QIAN Dou, MA Ru-kun, ZHANG Si, DING Liang, TANG Zhen-yu, WANG Guo-dong. Structure Optimization of Discharge Chamber in Radio-Frequency Ion Thruster[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2021, 41(9): 871-876. DOI: 10.13922/j.cnki.cjvst.202104012 |
[5] | XU Zongqi, TIAN Leichao, WANG Pingyang, HANG Guanrong. Design and Experimental Study on Radio Frequency Plasma Neutralizer[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2021, 41(8): 775-779. DOI: 10.13922/j.cnki.cjvst.202011029 |
[6] | Hou Zhuoli, Zhou Yanping, Zha Qiang, Li Maolin, Zuo Chao, Yang Bingjun, Wu Shengli. Inductively Coupled Plasma Etching of AlN Film for Fabrication of 5G Networks & Devices: A Methodological Study[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2020, 40(3): 220-225. DOI: 10.13922/j.cnki.cjovst.2020.03.07 |
[7] | Qu Wanju, Zhang Tian, Jiang Han, Qiao Shuang. Simulation Study on Discharge Characteristics of RF Ion Source for Neutron Tube[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2019, 39(11): 994-998. DOI: 10.13922/j.cnki.cjovst.2019.11.10 |
[8] | Yu Xinfa, Zhou Xueqian, Feng Qi, Dou Renchao, Pan Ying, Yan Rongxin. Leak DetectionIn-Situ of Spacecraft Facilities Containing Liquid Media with Mass Spectroscopy: An Experimental Study[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2019, 39(11): 958-963. DOI: 10.13922/j.cnki.cjovst.2019.11.04 |
[9] | Fu Xuecheng, Quan Xueling, Wu Liying, Ju Minni, Wang Ying. Synthesis of Low Stress Silicon Nitride Thin Films at 80℃ by Inductively Coupled Plasma Chemical Deposition[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2019, 39(10): 896-900. DOI: 10.13922/j.cnki.cjovst.2019.10.11 |
[10] | Yu Xinfa, Yan Rongxin, Zhou Xueqian, Dou Renchao, Dou Wei, Sun Lichen, Zhao Yueshuai. Modeling and Evaluation of Xenon Charging Characteristics for Spacecraft Electric Propulsion[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2019, 39(4): 279-283. DOI: 10.13922/j.cnki.cjovst.2019.04.01 |