Citation: | LU Hui, WANG Haolin, YANG Deren, PI Xiaodong. STM/STS Study of 4H(6H)-SiC Surface Reconstructions[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2023, 43(3): 191-201. DOI: 10.13922/j.cnki.cjvst.202303002 |
Semiconductor silicon carbide (SiC) is a promising material for high temperature, high frequency, and high power electron devices because of its wide band gap, high thermal conductivity, and high mobility. The performance of SiC devices can be affected by the quality of surfaces and interfaces. After annealing at high temperature, the surface reconstructions and morphologies of SiC can be changed, leading to different surface structures contact with metals or other materials. Therefore, the SiC devices will be affected by surface reconstructions and morphologies. Scanning tunneling microscopy/spectroscopy (STM/STS) is an extremely useful tool for getting the topographic information of reconstructed structures in real space and their electronic structures on surfaces. In this review, we introduce various surface reconstructions of 4H(6H)-SiC as well as their electronic structures which are analyzed by STM/STS, aiming to promote the development and progress of surface science and SiC devices.
[1] |
Capano M A,Trew R J,Editors G. Silicon carbide electronic materials and devices[J]. MRS Bulletin,1997,22(3):19−22 doi: 10.1557/S0883769400032711
|
[2] |
Nakamura D,Gunjishima I,Yamaguchi S,et al. Ultrahigh-quality silicon carbide single crystals[J]. Nature,2004,430(7003):1009−1012 doi: 10.1038/nature02810
|
[3] |
Moll P,Pfusterschmied G,Schneider M,et al. Biocompatible a-SiC: H-based bistable MEMS membranes with piezoelectric switching capability in fluids[J]. Journal of Microelectromechanical Systems,2022,31(3):372−383 doi: 10.1109/JMEMS.2022.3163477
|
[4] |
Xie X N,Loh K. Observation of a 6×6 superstructure on 6H-SiC (0001) by reflection high energy electron diffraction[J]. Applied Physics Letters,2000,77(21):3361−3363 doi: 10.1063/1.1328050
|
[5] |
Li L,Tsong I. Atomic structures of 6H-SiC (0001) and (000
|
[6] |
Enriquez H,Derycke V,Aristov V Y,et al. 1D electronic properties in temperature-induced c (4×2) to 2×1transition on the β-SiC (100) surface[J]. Applied Surface Science,2000,162:559−564
|
[7] |
Johannesson D,Member S,IEEE,et al. Evaluation of ultrahigh-voltage 4H-SiC gate turn-off thyristors and insulated-gate bipolar transistors for high-power applications[J]. IEEE Transactions on Power Electronics,2022,37(4):4133−4147 doi: 10.1109/TPEL.2021.3122988
|
[8] |
Langpoklakpam C,Liu A C,Chu K H,et al. Review of silicon carbide processing for Power MOSFET[J]. Crystals,2022,12(2):1−27
|
[9] |
Cuong V V,Member,IEEE,et al. Amplifier based on 4H-SiC MOSFET operation at 500℃ for harsh environment applications[J]. IEEE Transactions on Power Electronics,2022,69(8):4194−4199 doi: 10.1109/TED.2022.3184663
|
[10] |
Starke U,Schardt J,Franke M. Morphology, bond saturation and reconstruction of hexagonal SiC surfaces[J]. Applied Physics A-Materials Science & Processing,1997,65(6):587−596
|
[11] |
Starke U. Non-basal plane SiC surfaces: Anisotropic structures and low-dimensional electron systems[J]. Physica Status Solidi B-Basic Solid State Physics,2009,246(7):1569−1579 doi: 10.1002/pssb.200945170
|
[12] |
Liu Zhongliang,Kang Chaoyang,Tang Jun,et al. Homoepitaxial growth of SiC thin film on 4H-SiC substrate[J]. Journal of Synthetic Crystals,2012,41(1):106−109 (刘忠良,康朝阳,唐军,等. 4H-SiC衬底表面SiC薄膜的同质外延生长[J]. 人工晶体学报,2012,41(1):106−109(in chinese)
|
[13] |
Binning G,Rohrer H,Gerber Ch,et al. Surface studies by scanning tunneling microscopy[J]. Physical Review Letters,1982(49):57−61
|
[14] |
Hass J,Heer W A d,Conrad E H. The growth and morphology of epitaxial multilayer graphene[J]. Journal of Physics:Condensed Matter,2008,20(32):323202 doi: 10.1088/0953-8984/20/32/323202
|
[15] |
Moreau E,Godey S,Wallart X,et al. High-resolution angle-resolved photoemission spectroscopy study of monolayer and bilayer graphene on the C-face of SiC[J]. Physical Review B,2013,88(7):075406 doi: 10.1103/PhysRevB.88.075406
|
[16] |
黄筱淳. Te超薄膜在石墨烯衬底上的外延生长与电子结构调控[D]. 北京: 中国科学院大学, 2017
Huang Xiaochun. Epitaxial growth and electronic structure modulation of tellurium films on graphene[D]. Beijing: University of Chinese Academy of Sciences, 2017
|
[17] |
Kulakov M A,Henn G,Bullemcr B. SiC(0001)3 × 3-Si surface reconstruction-a new insight with a STM[J]. Surface Science,1996,346(1-3):49−54 doi: 10.1016/0039-6028(95)00919-1
|
[18] |
Li L,Tindall C,Takaoka O,et al. Structural and vibrational properties of 6H-SiC(0001) surfaces studied using STM/HREELS[J]. Surface Science,1997,385(1):60−65 doi: 10.1016/S0039-6028(97)00143-X
|
[19] |
Hoster H E,Kulakov M A,Bullemer B. Morphology and atomic structure of the SiC(000
|
[20] |
Gasparov V A,Riehl-Chudoba M,Schröter,B,et al. Scanning tunneling spectroscopy on the 6H-SiC(0001)(3 × 3) surface[J]. Europhysics Letters,2000,51(5):527−533 doi: 10.1209/epl/i2000-00370-1
|
[21] |
Stroscio J A,Fccnstra,R M,Fein A P. Electronic structure of the Si(111) 2 × 1 surface by scanning-Tu»cling microscopy[J]. Physical Review Letters,1986,57(20):2579−2582 doi: 10.1103/PhysRevLett.57.2579
|
[22] |
Martrou D,Leoni T,Chaumeton F,et al. Giant (12×12) and (4×8) reconstructions of the 6H-SiC(0001) surface obtained by progressive enrichment in Si atoms[J]. Physical Review B,2018,97(8):081302 doi: 10.1103/PhysRevB.97.081302
|
[23] |
Hiebel F,Magaud L,Mallet P,et al. Structure and stability of the interface between graphene and 6H-SiC(000
|
[24] |
Owman F,Mårtensson P. STM study of the SiC(0001)
|
[25] |
Owman F,Mårtensson P. Scanning tunneling microscopy study of SiC(0001) surface reconstructions[J]. Journal of Vacuum Science & Technology B,1996,14(2):933−937
|
[26] |
Johansson L I,Owman F,Mårtensson P. High-resolution core-level study of 6H-SiC(0001)[J]. Physical Review B,1996,53(20):13793−13802 doi: 10.1103/PhysRevB.53.13793
|
[27] |
Li L,Hasegawa Y,Sakurai T. Field-ion scanning tunneling microscopy study of the atomic structure of 6H-SiC(0001) surfaces cleaned by in situ Si molecular beam etching[J]. Journal of Applied Physics,1996,80(4):2524−2526 doi: 10.1063/1.363037
|
[28] |
Chang C S,Tsong I S T,Wang Y C,et al. Scanning tunneling microscopy and spectroscopy of cubic β-SiC(111) surfaces[J]. Surface Science,1991,256(3):354−360 doi: 10.1016/0039-6028(91)90877-U
|
[29] |
Tsai M H,Chang,C S,Dow,J D,et al. Electronic contributions to scanning-tunneling-microscopy images of an annealed β-SiC(111)surfac[J]. Physical Review B,1992,45(3):1327−1332 doi: 10.1103/PhysRevB.45.1327
|
[30] |
Owman F,Mårtensson P. The SiC(0001)
|
[31] |
Tok E S,Ong W J,Wee A T S. 6H-SiC(0 0 0 1) phase transition: evolution of the (6 × 6) magic clusters[J]. Surface Science,2004,558(1-3):145−158 doi: 10.1016/j.susc.2004.03.062
|
[32] |
Chen W,Loh K P,Xu H,et al. Nanoparticle dispersion on reconstructed carbon nanomeshes[J]. Langmuir,2004,20(25):10779−10784 doi: 10.1021/la048530m
|
[33] |
Chen W,Xu H,Liu L,et al. Atomic structure of the 6H–SiC(0001) nanomesh[J]. Surface Science,2005,596(1-3):176−186 doi: 10.1016/j.susc.2005.09.013
|
[34] |
Emtsev K V,Bostwick A,Horn K,et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide[J]. Nature Materials,2009,8(3):203−207 doi: 10.1038/nmat2382
|
[35] |
Hu Jugang,Jia zhenyu,Li Shaochun. Electron transport property of epitaixial bilayer graphene on SiC substrate[J]. Acta Physica Sinica,2022,71(12):127204 (胡聚罡,贾振宇,李绍春. 碳化硅衬底上外延双层石墨烯的电输运性质[J]. 物理学报,2022,71(12):127204(in chinese) doi: 10.7498/aps.71.20220062
|
[36] |
Lin Y M,Dimitrakopoulos C,Jenkins K A,et al. 100-GHz transistors from wafer-scale epitaxial graphene[J]. Science,2010,327(5966):662−662 doi: 10.1126/science.1184289
|
[37] |
Seungchul K,Jisoon J,Joon C H,et al. Origin of anomalous electronic structures of epitaxial graphene on silicon carbide[J]. Physical Review Letters,2008,100(17):17802
|
[38] |
Zhou S Y,Gweon G H,Fedorov A V,et al. Substrate-induced bandgap opening in epitaxial graphene[J]. Natures Materials,2007,6(10):770−775 doi: 10.1038/nmat2003
|
[39] |
Varchon F,Feng R,Hass J,et al. Electronic structure of epitaxial graphene layers on SiC: effect of the substrate[J]. Physical Review Letters,2007,99(12):126805 doi: 10.1103/PhysRevLett.99.126805
|
[40] |
Rutter G M,Guisinger N P,Crain J N,et al. Imaging the interface of epitaxial graphene with silicon carbide via scanning tunneling microscopy[J]. Physical Review B,2007,76(23):235416 doi: 10.1103/PhysRevB.76.235416
|
[41] |
Hu T W,Ma F,Ma D Y,et al. Evidence of atomically resolved 6 ×6 buffer layer with long-range order and short-range disorder during formation of graphene on 6H-SiC by thermal decomposition[J]. Applied Physics Letters,2013,102(17):171910 doi: 10.1063/1.4804290
|
[42] |
Choi J,Lee H,Kim S. Atomic-scale investigation of epitaxial graphene grown on 6H-SiC(0001) using scanning tunneling microscopy and spectroscopy[J]. Journal of Physical Chemistry C,2010,114(31):13344−13348 doi: 10.1021/jp1048716
|
[43] |
Hu T W,Ma D Y,Ma F,et al. Preferred armchair edges of epitaxial graphene on 6H-SiC(0001) by thermal decomposition[J]. Applied Physics Letters,2012,101(24):241903 doi: 10.1063/1.4769967
|
[44] |
Mallet P,Varchon F,Naud C,et al. Electron states of mono- and bilayer graphene on SiC probed by scanning-tunneling microscopy[J]. Physical Review B,2007,76(4):041403
|
[45] |
Poon S W,Chen W,Wee A T S,et al. Growth dynamics and kinetics of monolayer and multilayer graphene on a 6H-SiC(0001) substrate[J]. Physical Chemistry Chemical Physics,2010,12(41):13522−13533 doi: 10.1039/b927452a
|
[46] |
Tsukamoto T,Hirai M,Kusaka M,et al. Structural analysis of the heat-treated 4H(6H)-SiC(0001)Si surface[J]. Surface Science,1997,37(2-3):316−320
|
[47] |
Tsukamoto T,Hirai M,Kusaka M,et al. Annealing effect on surfaces of 4H(6H)-SiC(0001)Si face[J]. Applied Surface Science,1997,113:467−471
|
[48] |
Kulakov M A,Hoster,H,Henn,G,et al. Morphology and atomic structure of SiC(0001) surfaces: a UHV STM study[J]. Materials Science and Engineering B,1997,46(1-3):227−230 doi: 10.1016/S0921-5107(96)01980-0
|
[49] |
Schardt J,Bernhardt J,Starke U,et al. Crystallography of the 3×3 surface reconstruction of 3C-SiC(111), 4H-SiC(0001), and 6H-SiC(0001) surfaces retrieved by low-energy electron diffraction[J]. Physical Review B,2000,62(15):10335−10344 doi: 10.1103/PhysRevB.62.10335
|
[50] |
Starke U,Riedl C. Epitaxial graphene on SiC(0001) and SiC(000
|
[51] |
Kubler L,Simon L,Aubel D,et al. 6H- Aand 4H-SiC(0001) Si surface richness dosing by hydrogen etching: a way to reduce the formation temperature of reconstructions[J]. Surface Review and Letters,2003,10(1):55−63 doi: 10.1142/S0218625X03004652
|
[52] |
Riedl C,Starke U. Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces[J]. Physical Review B,2007,76(24):245406 doi: 10.1103/PhysRevB.76.245406
|
[53] |
Guy O J,Lodzinski M,Teng K S,et al. Investigation of the 4H–SiC surface[J]. Applied Surface Science,2008,254(24):8098−8105 doi: 10.1016/j.apsusc.2008.03.056
|
[54] |
Bernhardt J,Nerding M,Starke U,et al. Stable surface reconstructions on 6H-SiC(000
|
[55] |
Guy O J,Pope G,Blackwood I,et al. Creating room temperature Ohmic contacts to 4H–SiC: studied by specific contact resistance measurements and X-ray photoelectron spectroscopy[J]. Surface Science,2004,573(2):253−263 doi: 10.1016/j.susc.2004.09.035
|
[56] |
Blackwood I,Teng K,Maffeïs T,et al. Investigation of annealing effects on the adsorption of Ni on 4H–SiC (0001) surfaces using scanning tunneling microscopy and spectroscopy[J]. Journal of Applied Physics,2005,98:103528 doi: 10.1063/1.2136423
|
[57] |
Laikhtman A,Baffou G,Mayne A J,et al. Scanning tunnelling microscopy imaging and spectroscopy of p-type degenerate 4H-SiC(0001)[J]. Journal of Physics:condensed Mater,2005,17(26):4015−4022 doi: 10.1088/0953-8984/17/26/002
|
[58] |
Tanaka H,Ohno S,Miki K,et al. Thermal oxidation process on Si(113)-(3 × 2) investigated using high-temperature scanning tunneling microscopy[J]. Journal of nanotechnology,2022,13:172−181
|
[59] |
Mahato J C,Das D,Das P,et al. Tuning the length/width aspect ratio of epitaxial unidirectional silicide nanowires on Si(110)-16 × 2 surface[J]. Nano Express,2021,1(2):020045
|
[60] |
Osiecki J R,Suto S,Chutia A. Periodic corner holes on the Si(111)-7×7 surface can trap silver atoms[J]. Nature Communications,2022,13(1):2973 doi: 10.1038/s41467-022-29768-6
|