Service No
Advanced Search
WANG Jie, TIAN Yuan, CHEN Changjiang, LU Mei, LONG Xueyuan, LI Yaxi. Analysis of Throttling Effect of Large Caliber Vortex Tube Based on Fluent[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2023, 43(2): 156-162. DOI: 10.13922/j.cnki.cjvst.202205007
Citation: WANG Jie, TIAN Yuan, CHEN Changjiang, LU Mei, LONG Xueyuan, LI Yaxi. Analysis of Throttling Effect of Large Caliber Vortex Tube Based on Fluent[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2023, 43(2): 156-162. DOI: 10.13922/j.cnki.cjvst.202205007

Analysis of Throttling Effect of Large Caliber Vortex Tube Based on Fluent

More Information
  • Received Date: May 14, 2022
  • Available Online: February 08, 2023
  • In order to verify the throttling effect of the vortex tube, a physical model is established, and methane is used as the working fluid. The variation rule of physical parameters in the flow field is simulated based on Fluent. The analysis shows that when the cold flow rate is 0.5, methane (298 K, 12 MPa) rotates in the vortex tube at a high speed. The external swirling gas temperature rises to 303 K, closing the tube wall to the hot end outlet. The internal swirling gas temperature decreases to 293 K, around the axis to the cold end outlet. Externally swirling high temperature gas wrapped in internally swirling low temperature gas flow can effectively alleviate the crystallization of pipe wall and avoid gas freezing blockage; the axial position produces pressure stagnation point and velocity direction break point, along the flow direction, the internal and external swirling gas have energy loss, resulting in pressure and velocity decrease. The throttling interval is about 3 MPa, and heat transfer loss is ignored. After the vortex tube confluence, the temperature drop interval of the gas is almost 0 K, while the temperature drop interval of the throttle valve is 9.8 K. The comparison of throttling and depressurization process flow with throttle valve and vortex tube as key equipment shows that the energy separation effect of vortex tube is better than that of throttle valve, which not only reduces the temperature drop range of the gas, but also has a significant throttling effect. In practical application, the throttling process of the gas transmission station can be simplified, and the investment and operation costs can be reduced.

  • [1]
    He L J,Wu X W,Wang D,et al. Numerical simulation of vortex tube performance and three-dimensional vortex flow based on Fluent[J]. Acta Energiae Solaris Sinica,2020,41(11):143−148 (何丽娟,吴心伟,王荻,等. 基于Fluent的涡流管性能及三维强漩流流动的数值模拟[J]. 太阳能学报,2020,41(11):143−148(in chinese)
    [2]
    Hu Z H,Yang X. Effect of vortex chamber diameter on the performance of vortex tube[J]. Vacuum and Cryogenics,2017,23(01):52−57 (胡卓焕,杨欣. 涡流室直径对涡流管性能的影响[J]. 真空与低温,2017,23(01):52−57(in chinese)
    [3]
    Wang K,Xie L,OuYang X,et al. Numerical simulation of flow field and temperature field in natural gas single flow vortex tube[J]. Natural Gas Industry,2020,40(07):113−119 (王凯,谢磊,欧阳欣,等. 天然气单流涡流管流场与温度场数值模拟[J]. 天然气工业,2020,40(07):113−119(in chinese)
    [4]
    He P,Zhang C B. Numerical simulation of flow and heat transfer in a large diameter eight-channel spiral nozzle eddy current tube[J]. Science Technology and Engineering,2020,20(11):4264−4272 (何鹏,张成斌. 大管径八流道螺旋喷嘴涡流管流动与传热数值模拟[J]. 科学技术与工程,2020,20(11):4264−4272(in chinese)
    [5]
    Hao J S,Yang Y Y,Jiang J,et al. Review of vortex tube design and application[J]. Cryogenics & Superconductivity,2019,47(11):16−21+50 (郝金顺,杨义勇,蒋杰,等. 涡流管设计及应用进展综述[J]. 低温与超导,2019,47(11):16−21+50(in chinese)
    [6]
    Zhou S W,Jiang R Q,Song F Y,et al. Numerical simulation of flow and heat transfer in eddy current tube[J]. Ciesc Journal,2006(07):1548−1552 (周少伟,姜任秋,宋福元,等. 涡流管内流动与传热数值模拟[J]. 化工学报,2006(07):1548−1552(in chinese)
    [7]
    Ding C,Huang Y W,Gu H,et al. Research on refrigeration characteristics of new vortex tube[J]. Cryogenics & Superconductivity,2020,48(03):75−80 (丁昌,黄宇巍,顾华,吕林鹏. 新型涡流管的制冷特性研究[J]. 低温与超导,2020,48(03):75−80(in chinese)
    [8]
    Li H R,Ai G S,Zhang H R,et al. Strengthening the effect of hot end heat transfer on vortex tube performance[J]. Journal of Dalian University of Technology,2021,61(06):601−607 (李昊睿,艾国生,张恒瑞,等. 强化热端换热对涡流管性能影响[J]. 大连理工大学学报,2021,61(06):601−607(in chinese)
    [9]
    Zhang B,Guo X J. Numerical simulation of unsteady swirl flow field in vortex tube[J]. Journal of Thermal Science and Technology,2017,16(01):47−51 (张博,郭向吉. 涡流管非稳态旋流流场数值模拟研究[J]. 热科学与技术,2017,16(01):47−51(in chinese)
    [10]
    Skye H M,Nellis G F,Klein S A. Comparison of CFD analysis to empirical aata in a commercial vortex tube[J]. International Journal of Refrigeration,2006,29(1):71−80 doi: 10.1016/j.ijrefrig.2005.05.004
    [11]
    Thakare H R,Parekh A D. CFD analysis of energy separation of vortex tube employing different gases, turbulence models and discretisation schemes[J]. International Journal of heat and Mass Transfer,2014,78:360−370 doi: 10.1016/j.ijheatmasstransfer.2014.06.083
    [12]
    Noor D Z,Mirmanto H,Sarsetiyanto J,et al. Numerical study of flow and thermal field on a parallel flow vortex tube[J]. Engineering,2012,04(11):774−777 doi: 10.4236/eng.2012.411099
    [13]
    Rafiee S E,Sadeghiazad M M. Experimental and CFD analysis on thermal performance of double-circuit vortex tube (DCVT) geometrical optimization, energy transfer and flow structural analysis[J]. Applied Thermal Engineering,2018,128:1223−1237 doi: 10.1016/j.applthermaleng.2017.09.112
    [14]
    Rafiee S E,Sadeghiazad M M. Experimental and 3D CFD analysis on optimization of geometrical parameters of parallel vortex tube cyclone separator[J]. Aerospace Science and Technology,2017,63:110−122 doi: 10.1016/j.ast.2016.12.014
    [15]
    He L J,Wang S,Zhang L,et al. Influence of outlet pressure ratio of eddy current tube on its performance[J]. Chinese Journal of Vacuum Science and Technology,2019,39(12):1161−1165 (何丽娟,王飒,张磊,等. 涡流管热冷出口压力比对其性能的影响研究[J]. 真空科学与技术学报,2019,39(12):1161−1165(in chinese)
    [16]
    Wang Z,Wu K X,Chen G M,et al. Experimental study on the performance of vortex tube with different pressure ratio at hot and cold outlet[J]. Journal of Engineering Thermophysics,2013,34(08):1407−1410 (王征,吴孔祥,陈光明,等. 涡流管热冷出口不同压力比性能实验[J]. 工程热物理学报,2013,34(08):1407−1410(in chinese)
    [17]
    Li N,Chen G M. Research on coupling characteristics of vortex tube and refrigerant[J]. Journal of Engineering Thermophysics,2019,40(01):28−35 (黎念,陈光明. 涡流管与制冷工质的耦合特性研究[J]. 工程热物理学报,2019,40(01):28−35(in chinese)
    [18]
    Zhao M M,Li H X,Pan P. The effect of the diameter of hot end tube on the performance of vortex tube was simulated[J]. Chinese Journal of Vacuum Science and Technology,2019,39(08):736−743 (赵林林,李海霞,潘鹏. 模拟研究热端管直径对涡流管性能的影响[J]. 真空科学与技术学报,2019,39(08):736−743(in chinese)
    [19]
    He L J,Pan P,Huang Y W,et al. Numerical simulation and structure optimization of vortex tube based on Fluent[J]. Chinese Journal of Vacuum Science and Technology,2018,38(01):59−64 (何丽娟,潘鹏,黄艳伟,等. 基于Fluent的涡流管数值模拟与结构优化研究[J]. 真空科学与技术学报,2018,38(01):59−64(in chinese)
    [20]
    吴雪莹. 高压天然气涡流管内能量分离特性及节流换能技术研究[D]. 青岛: 中国石油大学(华东), 2017

    Wu X Y. Research on energy separation characteristics and throttling energy exchange technology in vortex tube of high pressure natural gas[D]. Qingdao: China University of Petroleum, 2017
    [21]
    Liang F C,Wu X Y. Numerical simulation of flow and heat transfer in vortex tube with six-channel nozzle[J]. Cryogenics & Superconductivity,2017,45(01):1−5 (梁法春,吴雪莹. 六流道喷嘴涡流管流动与传热数值模拟[J]. 低温与超导,2017,45(01):1−5(in chinese)
    [22]
    Guo Y L,Zhou J L,Wang Y J,et al. Simulation of flow and heat transfer characteristics in a countercurrent eddy current tube[J]. Natural Gas and Oil,2020,38(03):1−6 (郭艳林,周俊龙,汪怡佳,等. 逆流型涡流管流动与传热特性模拟研究[J]. 天然气与石油,2020,38(03):1−6(in chinese)
  • Related Articles

    [1]ZHU Minghui, CHEN Yu, XU Manman, SHEN Jie, LI Xiang, ZHOU Yan. Numerical Simulation Analysis of Electron Density Distribution Characteristics in MPCVD Cylindrical Cavity[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2025, 45(3): 248-256. DOI: 10.13922/j.cnki.cjvst.202409011
    [2]CHENG Yin, WANG Guipeng, LI Zhe, NI Weiming, WANG Jian, XIE Yuanhua, LIU Kun. Numerical Calculation and Simulation Analysis of Gas Thermodynamic Process in Screw Vacuum Pump[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2024, 44(12): 1040-1051. DOI: 10.13922/j.cnki.cjvst.202407011
    [3]WANG Qigen, ZHANG Cheng, ZHANG Miao, QU Jianwu. Numerical Simulation of Internal Flow Resistance and Noise Characteristics of Sea Valve Based on Deflector Structure[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2024, 44(7): 601-611. DOI: 10.13922/j.cnki.cjvst.202308006
    [4]WANG Qianting, WANG Junyu, ZHANG Kepeng, SONG Yongxing, ZHANG Linhua, LI Jianjun. Analysis of Cavitation Characteristics of Stop Throttle Valve[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2023, 43(8): 715-723. DOI: 10.13922/j.cnki.cjvst.202210022
    [5]WU Zilan, WAN Jun, MA Jien, CAI Jinhui, XU Ya, LI Yifan, LAN Lili. Flow Field Analysis and Experimental Study of Batch Atomic Layer Deposition Reactor Based on Fluent Model[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2023, 43(1): 72-78. DOI: 10.13922/j.cnki.cjvst.202207003
    [6]CHEN Guangfeng, HU Xiangyu, LIU Ze, LI Zengke, WANG Qinhui, WANG Yi. Analysis about Temperature Field and Signal Processing of Thermal Micro Mass Flow Sensor[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2021, 41(12): 1184-1190. DOI: 10.13922/j.cnki.cjvst.202107001
    [7]He Lijuan, Sun Shangzhi, Ma Wenqing, Wang Dechao, Pan Peng, Tian Baoyun. Influence of Hot End Tube Length on Flow Field of Vortex Tube: A Simulation Study[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2019, 39(2): 163-168. DOI: 10.13922/j.cnki.cjovst.2019.02.13
    [8]Li Xiaomin, Gao Feng, Wang Lijun, Wang He. Heat Flow and Temperature Profile Produced by Ground Heating: A Simulation Study[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2019, 39(1): 92-96. DOI: 10.13922/j.cnki.cjovst.2019.01.15
    [9]Shi Tongxin, Zhang Ming. Flow Field in Asymmetric Nozzle of Diesel Engine: A Simulation Study[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2018, 38(12): 1088-1092. DOI: 10.13922/j.cnki.cjovst.2018.12.14
    [10]He Lijuan, Pan Peng, Huang Yanwei, Sun Shangzhi. Design Optimization of Vortex Tube Structure by Numerical Simulation and Orthogonal Analysis[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2018, 38(1): 59-64. DOI: 10.13922/j.cnki.cjovst.2018.01.12
  • Cited by

    Periodical cited type(1)

    1. 王杰,田园,陆梅,陈长江,刘渊. 冷端管径对高压节流型涡流管性能影响分析. 低温工程. 2024(01): 65-71+80 .

    Other cited types(4)

Catalog

    Article views (170) PDF downloads (36) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return