Citation: | CHEN Jinghe, LIU Peisheng, WANG Yaoqi, SONG Shuai, HOU Hongliang. Compression Performance and Preparation of Composite Porous Magnesium Alloy with Ceramic Hollow Sphere[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2022, 42(1): 60-68. DOI: 10.13922/j.cnki.cjvst.202106018 |
[1] |
巢青,孙剑芬,孙志刚,等.金属基复合材料力学性能研究进展[J].航空发动机, 2018, 44(04):91-98
|
[2] |
刘培生.多孔材料引论[M].北京:清华出版社, 2013
|
[3] |
刘培生,崔光,程伟.多孔材料性能模型研究1:数理关系[J].材料工程, 2019, 47(6):42-62
|
[4] |
刘培生,夏凤金,程伟.多孔材料性能模型研究2:实验验证[J].材料工程, 2019, 47(7):35-49
|
[5] |
刘培生,杨春艳,程伟.多孔材料性能模型研究3:数理推演[J].材料工程, 2019, 47(8):59-81
|
[6] |
An J T, Chen C J, Zhang M. Effect of CaCO3Content Change on the Production of Closed-Cell Aluminium Foam by Selective laser Melting[J]. Optics and Laser Technology, 2021, 141(9):107097
|
[7] |
Finkelstein A, Husnullin D, Borodianskiy K. Design and Fabrication of Highly Porous Replicated Aluminium Foam Using Double-Granular Space Holder[J]. Materials, 2021, 14(7):1619
|
[8] |
Sun L, Wang Y, Wang L, et al. Preparation and Properties of Controllable Aluminium Foam[J]. Materials Research Express, 2021, 8(2):026526
|
[9] |
Vengatachalam B, Huang R, Liu Z, et al. Initial Yield Behaviour of Closed-Cell Aluminium Foams in Biaxial Loading[J]. International Journal of Mechanical Sciences,2021, 191:106063
|
[10] |
胡中芸,杨东辉,李军,等.泡沫镁的制备及其性能和应用[J].材料导报, 2014, 28(01):79-85
|
[11] |
杨慧华,郝刚领,李先雨.泡沫镁的制备及其性能与应用[J].价值工程,2015,34(23):141-142
|
[12] |
Rúa M J, Zuleta A A, Ramírez J, et al. Micro-Arc Oxidation Coating on Porous Magnesium Foam and Its Potential Biomedical Applications[J]. Surface and Coatings Technology, 2019, 360:213-221
|
[13] |
Saad A, Rahim R, Harun M N, et al. The Influence of Flow Rates on the Dynamic Degradation Behaviour of Porous Magnesium under a Simulated Environment of Human Cancellous Bone[J]. Materials&Design, 2017, 122:268-279
|
[14] |
张士卫.泡沫金属的研究与应用进展[J].粉末冶金技术, 2016, 34(03):222-227
|
[15] |
李楠楠,庞晓军,王芳,等.泡沫镁合金散热器对LED灯散热性能影响因素分析[J].铸造设备与工艺,2015,(02):43-45
|
[16] |
李贤昌,张瑛,王芳.泡沫镁散热器强制对流散热性能模拟研究[J].铸造设备与工艺, 2017,(03):19-22
|
[17] |
Korner C, Hirschmann M, Brautigam V, et al. Endogenous Particles Stabilization during Magnesium Integral Foam Production[J]. Advanced Engineering Materials,2004, 6(6):385-390
|
[18] |
Xia X, Feng J, Jian D, et al. Fabrication and Characterization of Closed-Cell Magnesium-Based Composite Foams[J]. Materials and Design, 2015, 74:36-43
|
[19] |
Renger K, Kaufmann H. Vacuum Foaming of Magnesium Slurries[J]. Advanced Engineering Materials, 2005, 7(3):117-123
|
[20] |
Wang X, Li Z, Huang Y, et al. Processing of Magnesium Foams by Weakly Corrosive and Highly Flexible Space Holder Materials[J]. Materials and Design, 2014, 64:324-329
|
[21] |
Reddy T H, Pal S, Kumar K C, et al. Finite Element Analysis for Mechanical Response of Magnesium Foams with Regular Structure Obtained by Powder Metallurgy Method[J]. Procedia Engineering, 2016, 149:425-430
|
[22] |
Hao G L, Fu S H, Wei D L. Processing and Mechanical Properties of Magnesium Foams[J]. Journal of Porous Materials, 2008, 16(3):251-256
|
[23] |
Evans A G, Hutchinson J W, Ashby M F. Multi-Functionality of Cellular Metal Systems[J]. Progress in Materials Sciences, 1999, 43(3):171-221
|
[24] |
Kang M H, Jung H D, Kim S W, et al. Production and Bio-Corrosion Resistance of Porous Magnesium with Hydroxyapatite Coating for Biomedical Applications[J]. Materials Letters, 2013, 108(5):122-124
|