Service No
Advanced Search
WANG Wencheng, ZHANG Peng, LI Xiufeng, LI Pingan, DENG Fansheng. The Influence of 12 kV Vacuum Interrupter Structure on Electric Field Distribution: A Simulation Study[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2021, 41(11): 1031-1038. DOI: 10.13922/j.cnki.cjvst.202101022
Citation: WANG Wencheng, ZHANG Peng, LI Xiufeng, LI Pingan, DENG Fansheng. The Influence of 12 kV Vacuum Interrupter Structure on Electric Field Distribution: A Simulation Study[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2021, 41(11): 1031-1038. DOI: 10.13922/j.cnki.cjvst.202101022

The Influence of 12 kV Vacuum Interrupter Structure on Electric Field Distribution: A Simulation Study

More Information
  • Received Date: January 21, 2021
  • Available Online: September 11, 2023
  • In this paper, the influence of the voltage sharing shield, the main shield, and the contact distance on the electric field and potential distribution of the vacuum interrupter were studied by using COMSOL software.The results show that the field strength is concentrated at the end of the main shield, the end of moving and static contacts, and the area between main shield and contacts. These locations, where breakdown discharge occurs frequently, are key parts during the structural design of vacuum interrupter. By improving the structural symmetry of the vacuum interrupter, the uniformity of electric field distribution was enhanced. The maximum field strength was transferred from the vicinity of the contact to the end of the main shield by making the end of the main shield curling inward, which is good for arc extinguishing. The maximum field strength is minimized by setting the curling radius of the main shield end as 3 mm and the curling angle as 90°. The field strength near the contacts is minimized by setting the slope of the main shield as 15°. Setting the radius of the main shielding cover as 50 mm and setting the total length as 110 mm are more reasonable. By increasing the contact distance, the electric field intensity inside the vacuum interrupter was reduced, but the electric field distribution wasn't changed. The results of this paper could provide the theoretical basis for the miniaturization design of vacuum interrupter.
  • [1]
    张豪,符一凡,董华庆,等.双断口真空断路器开断速度对电压分布的影响[J].电网技术,2021,45(6):2427-2432
    [2]
    刘韬,马志瀛.高压真空灭弧室内部电场分布的影响因素[J].高电压技术,2007,33(1):136-139
    [3]
    邱志斌,黄道春,阮江军.72.5 k V真空灭弧室电位和电场分布研究[J].高压电器,2012,48(11):36-42
    [4]
    黄道春,阮江军,吴高波,等.模块化多断口真空断路器电位和电场分布研究[J].高电压技术,2011,37(1):124-130
    [5]
    司明月.新型真空灭弧室的结构对电磁场分布影响的仿真研究[D].大连:大连交通大学,2018
    [6]
    王季梅.真空灭弧室设计制造及其应用[M].西安:西安交通大学出版社,1993
    [7]
    王季梅,钱予圭.论高压真空灭弧室和真空断路器的产品开发[J].高压电器,2003,39(1):65-67
    [8]
    曹云东,刘晓明,王尔智,等.12 k V户外真空断路器电场数值计算与分析[J].高压电器,2002,38(3):14-15
    [9]
    刘顺新,丛吉远,廖敏夫,等.真空灭弧室发展分析[J].高压电器,2006,42(5):375-378
    [10]
    Mateev V,Tanev R,Marinova I.Simulation of Electric and Thermal Fields of High Voltage Interrupter Vacuum Chamber[C].2014 18th International Symposium on Elec-trical Apparatus and Technologies (SIELA),Bourgas,2014:1-4
    [11]
    Qi H,Zhou D.Influence of Shields to the Static Electric Field in Vacuum Interrupter for Optimization Designing[C].2009 Chinese Control and Decision Conference,Gui-lin,2009:1973-1977
    [12]
    张洋,庄火庚.真空灭弧室内部电场分布的分析与仿真[J].电子科技,2015,28(6):108-110+114
    [13]
    Nakano Y,Surges B,Hinrichsen V.Increasing the Inter-nal Field Strength of Vacuum Interrupters with Vapor Shield Potential Control[J].IEEE Transactions on Power Delivery,2018,33(6):3155-3161
    [14]
    赵智忠,邹积岩,文化宾,等.高压真空灭弧室的电场设计的新方法[J].中国电机工程学报,2005,25(6):112-115
    [15]
    肖连政.一种具有杯状横磁场电极结构的真空灭弧室[D].成都:电子科技大学,2006
    [16]
    徐东阳,曹云东,刘晓明,等.10 k V户外真空断路器灭弧室电场数值分析[J].沈阳工业大学学报,2002,24(2):110-112
    [17]
    吕中明.真空灭弧室绝缘水平的分析与探讨[D].成都:电子科技大学,2010
    [18]
    孙巍,于琪,刘洋,等.12 k V真空灭弧室内部电场数值计算与分析[J].黑龙江电力,2014,36(3):214-218
  • Related Articles

    [1]DONG Zengbo, YANG Peng, FAN Hui, ZANG Qian, JIA Boyan, LI Bingyu, LIU Xiaoming. Optimization and Analysis of Static Insulation for Vacuum Interrupter Based on NSGA-Ⅱ[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2021, 41(12): 1198-1202. DOI: 10.13922/j.cnki.cjvst.202104020
    [2]CHEN Wenbo, FENG Jun, CHEN Lunjiang, YANG Puqiong, LIU Chuandong. Numerical Calculation on Temperature and Flow Field Distribution of DC-RF Plasma[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2021, 41(12): 1191-1197. DOI: 10.13922/j.cnki.cjvst.202102002
    [3]WANG Jinwei, YI Minghui, LIN Yunlong, WANG Guodong, CHEN Changqi. Simulation on the Magnetic Shielding Structure of Ionization Gauge in a Superconducting Magnetic Field[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2021, 41(3): 225-229. DOI: 10.13922/j.cnki.cjvst.202008018
    [4]CHEN Wenbo, CHEN Lunjiang, LIU Chuandong, CHENG Changming, TONG Honghui, ZHU Hailong. Distribution of Temperature and Flow Fields of Gas-Mixture RF Thermal Plasma:A Simulation Study[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2020, 40(12): 1124-1130. DOI: 10.13922/j.cnki.cjovst.2020.12.03
    [5]Qi DaCui, Li XiaoZhao, Liu ShiBo, Xue CongJun, Qi ChunWei. Strength and Delay-Time of Magnetic Field in Magnetic Vacuum Circuit Breaker: A Simulation and Experimental Study[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2020, 40(10): 932-936. DOI: 10.13922/j.cnki.cjovst.2020.10.07
    [6]Liu Xiaoming, Liu Wei, Li Longnv, Zhu Gaojia, Jiang Wentao. Optimal Design of Vacuum Interrupter Based on Improved Neural Network and Genetic Algorithm[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2020, 40(4): 359-364. DOI: 10.13922/j.cnki.cjovst.2020.04.14
    [7]Chen Haolin, Xie Keqiang, Ji Wentao, Huang Haiyi. Temperature Field Distribution of Graphite Condenser in Vacuum Carbothermal Reduction: A Simulation Study[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2020, 40(1): 91-97. DOI: 10.13922/j.cnki.cjovst.2020.01.16
    [8]Li Chunwei, Tian Xiubo, Sun Baihui, Zhao Meijun, Song Weiyu, Wu Song. Synergistic Effect of Electric and Magnetic Fields on Ion-Current Enhancement in High Power Impulse Magnetron Sputtering: An Experimental Study[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2018, 38(10): 861-868. DOI: 10.13922/j.cnki.cjovst.2018.10.07
    [9]Ma Mian-Jun, Lei Jun-Gang, Li Cheng, Li Shi-Xun, Zong Chao, Liu Ze, Cui Yang. Design Optimization of Zhangheng-1 Space Electric Field Detector[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2018, 38(7): 582-589. DOI: 10.13922/j.cnki.cjovst.2018.07.06
    [10]Zhu Jicong, Fang Meihua, Wu Mingzhi, Tian Pengyu, Fei Tao. Effect of Jovian Magnetic Field on Charging of Solar-Array-Panel for Spacecraft: A Simulation Study[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2018, 38(6): 531-536. DOI: 10.13922/j.cnki.cjovst.2018.06.15

Catalog

    Article views (93) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return