Service No
Advanced Search
Pan Hui, Li Haiguang, Wu Xuan. Pattern Identification and Prediction of Air-Water Flow in Small Channel with LSTM Recurrent Neural Network[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2020, 40(6): 591-597. DOI: 10.13922/j.cnki.cjovst.2020.06.18
Citation: Pan Hui, Li Haiguang, Wu Xuan. Pattern Identification and Prediction of Air-Water Flow in Small Channel with LSTM Recurrent Neural Network[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2020, 40(6): 591-597. DOI: 10.13922/j.cnki.cjovst.2020.06.18

Pattern Identification and Prediction of Air-Water Flow in Small Channel with LSTM Recurrent Neural Network

More Information
  • Received Date: November 19, 2019
  • Available Online: September 12, 2023
  • The air-water flow in a horizontal ring of small organic-glass tube,3 mm in hydraulic diameter,was investigated with the lab-built test platform,comprising pressure-difference sensor,photoelectric position sensor,high-speed video camera and host computer.Four distinctive flow patterns,including the annular,layered,intermittent and slug flow-patterns.In addition,the fluctuation signals of pressure difference,involving the four flow patterns,were analyzed and predicted in a short term with the model of Long and Short Term Memory(LSTM) recurrent neural network.The results show that when it comes to four flow-patterns,on line prediction with LSTM recurrent neural network model was relatively accurate.To be specific,for the annular/layered/intermittent/slug flow-patterns,the mean-square errors were estimated to be 0.004,0.0099,0.0075 and 0.0156,respectively.
  • [1]
    陈学俊,陈立勋,周芳德.气液两相流与传热基础[M].北京:科技出版社,1995:105-128
    [2]
    郭喜庚,刘光临,李永光.高质量含气率垂直下降两相流扰流的研究[J].武汉水利电力大学学报,2000,33(5):56-58
    [3]
    肖飞.圆形小通道内气液两相流动特性研究[D].东北:东北电力大学,2015
    [4]
    石国庆.小通道套管换热器内流体流动与传热性能研究[D].南京:东南大学,2015
    [5]
    李卓,俞坚,夏国栋,等.水平矩形小通道内气-液两相流流动特性的研究[J].流体机械,2006(08):1-5
    [6]
    李常伟,曹夏昕,孙立成,等.竖直窄矩形通道气液两相流流型识别研究[J].原子能科学技术,2012,46(09):1055-1060
    [7]
    龙军.基于传感器数据融合的小通道气液两相流参数测量新方法研究[D].杭州:浙江大学,2013
    [8]
    Li Hongwei,Liu Junpeng,Li Tao,et al.Chinese Journal of Chemical Engineering,2015,23:1017-1026
    [9]
    郑小虎.基于多视觉的小管道气液两相流参数测量研究[D].杭州:浙江大学,2016
    [10]
    Hochreiter S,Schmidhuber,Jürgen.Long Short-Term Memory[J].Neural Computation,1997,9(8):1735-1780
    [11]
    Graves A.Long Short-Term Memory.Supervised Sequence Labelling with Recurrent Neural Networks[M].Springer Berlin Heidelberg,2012
    [12]
    于家斌,尚方方,王小艺,等.基于GF-LSTM网络的蓝藻水华预测方法[J/OL].计算机应用,2018:1-6
    [13]
    李万,冯芬玲,蒋琦玮.改进粒子群算法优化LSTM神经网络的铁路客运量预测[J].铁道科学与工程学报,2018,15(12):3274-3280
    [14]
    陈毓飞,金跃辉,杨谈.一种基于LSTM的燃气管道施工破坏风险预测模型[J].网络新媒体技术,2019,8(01):24-29
    [15]
    白盛楠,申晓留.基于LSTM循环神经网络的PM2.5预测[J].计算机应用与软件,2019,36(01):67-70+104
    [16]
    王琨,高敬更,张勇红,等.基于LSTM神经网络的复合变量电动汽车充电负荷预测方法技术研究[J].工业仪表与自动化装置,2019,(01):27-31
    [17]
    Kandlikar S G.Microchannels and Minchannels-History,Terminology,Classification and Current Research Needs:1st International Conference on Microchannels and Minichannels,Rochester,USA:New York,2003[C].ASME
    [18]
    安鹏,曹丹平,赵宝银,等.基于LSTM循环神经网络的储层物性参数预测方法研究[J].地球物理学进展,2019,34(05):1849-1858
    [19]
    Sofiyanti N,Fitmawati D I,Roza A A.Understanding LSTM Networks[J].GITHUB Colah blog,2015,22:137-141
    [20]
    安鹏,曹丹平.基于LSTM循环神经网络的孔隙度预测方法研究[C].中国地球科学联合学术会,2018:18-20
    [21]
    何岱海,徐健学,陈永红.非线性动力学相空间重构中小波变换方法研究[J].振动工程学报,1999,(01):29-34
    [22]
    游荣义,陈忠,徐慎初,等.基于小波变换的混沌信号相空间重构研究[J].物理学报,2004,(09):2882-2888
    [23]
    赵玉成,肖忠会,许庆余.混沌与噪声信号的谐波小波分析[J].机械强度,2001,(01):69-71
    [24]
    Bukkapatnam Satish T S,Kumara Sounder R T,Lakhtakia Akhlesh.Signal Processing,2002,82(10):1351-1374
  • Related Articles

    [1]KUANG Yonglin, WANG Xiaodong, NING Jiuxin, SUN Kun, CAI Yonghang, DU Zhihua. Prediction of Turbomolecular Pump Performance Using Neural Networks[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2024, 44(9): 811-818. DOI: 10.13922/j.cnki.cjvst.202407013
    [2]GAO Ya, XU Gaobin, ZHU Xiaomeng, ZHANG Yu, GUAN Cunhe, FENG Jianguo. Design of Small-Range High-Sensitivity Piezoresistive Gauge Pressure Sensors[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2023, 43(11): 947-953. DOI: 10.13922/j.cnki.cjvst.202305016
    [3]CHEN Zhili, LIANG Shuai, LI Guohao, ZHAO Zhipeng, LIU Yutai, DU Guangyu. Comparative Study on Comprehensive Properties Prediction of DLC Thin Films Based on Different Neural Networks[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2023, 43(8): 665-673. DOI: 10.13922/j.cnki.cjvst.202212005
    [4]KONG Linggang, WANG Zhuang, HUANG Kai. State Space Model Predictive Control of Chromium Nitride Reactive Magnetron Sputtering[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2022, 42(7): 511-516. DOI: 10.13922/j.cnki.cjvst.202110006
    [5]WEI Guo, LIAO Ningbo, ZHANG Cheng. Research on Flexible Capacitive Pressure Sensor Based on Millimeter-Level Cylindrical Structure[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2022, 42(6): 462-468. DOI: 10.13922/j.cnki.cjvst.202110016
    [6]CHEN Guangfeng, HU Xiangyu, LIU Ze, LI Zengke, WANG Qinhui, WANG Yi. Analysis about Temperature Field and Signal Processing of Thermal Micro Mass Flow Sensor[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2021, 41(12): 1184-1190. DOI: 10.13922/j.cnki.cjvst.202107001
    [7]WANG Haiming, LI Qingling, JIA Wenguang. Study on the Variation of the Average Differential Pressure between the Head and Tail of High-Speed Trains in Vacuum Tube[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2021, 41(12): 1164-1170. DOI: 10.13922/j.cnki.cjvst.202104014
    [8]WU Qinbin, WANG Xueyu, LUO Richeng, XIAO Hongfeng, TIAN Dikai, ZHANG Yufei. Gas Dischargeat Short Gap between Wire and J-Clamp: A Simulation Study[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2021, 41(1): 80-88. DOI: 10.13922/j.cnki.cjvst.202003035
    [9]Feng Ruilong, Wang Zhifei, Feng Haiquan, Li Fan, Du Chengxin. Aerodynamic Resistance of Train Running in Vacuum Tube: A Simulation Study[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2020, 40(9): 827-832. DOI: 10.13922/j.cnki.cjovst.2020.09.05
    [10]Jiang Jiandong, Jin Xiao, Mao Zhilin, Sun Yuanfang, Zhou Qian. Modeling and Moisture Content Prediction of Vacuum Pulsating Drying of Paddy Rice[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, 2019, 39(5): 367-373. DOI: 10.13922/j.cnki.cjovst.2019.05.02

Catalog

    Article views (9) PDF downloads (6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return