整体预热对 TNM 合金电子束焊接接头组织的影响

贾国钊 付鹏飞^{*} 毛智勇 林博超 李立航 杨洋 李嘉文 (中国航空制造技术研究院高能束流加工技术重点实验室 北京 100024)

Effect of Overall Preheating on Microstructure of Electron Beam Welded Joint of TNM Alloy

JIA Guozhao, FU Pengfei^{*}, MAO Zhiyong, LIN Bochao, LI Lihang, YANG Yang, LI Jiawen (Science and Technology on Power Beam Processes Laboratory, VIC Manufacturing Technology Institute, Beijing 100024, China)

Abstract In order to suppress the welding crack of TiAl alloy for aero engines, the electron beam welding test on TNM (Ti-43.5Al-4Nb-1Mo-0.1B) alloy test plate was carried out at 300 °C and 500 °C under overall preheating. The microstructure of the joint was characterized by optical microscopy (OM), scanning electron microscopy (SEM) and electron backscattering diffraction (EBSD), and the effects of preheating temperature on the microstructure such as cracks, weld morphology, grain size, phase composition and hardness were analyzed. The results show that the weld width increases with the preheating temperature, and the crack disappears when the preheating temperature is 500°C. Grain coarsening in the near-heat affected zone and refinement in the far-heat affected zone were observed. With increasing preheating temperature, the content of α_2 phase decreased and the content of γ phase increased in the welded joint, γ phase became the main phase under the preheating temperature of 500°C. In addition, the nearly lamellar feature of α_2 phase disappears under the preheating temperature of 500°C. With increasing preheating temperature, the dislocation density and hardness of the weld are obviously reduced.

Keywords TNM titanium aluminide, Electron beam welding, Overall preheating, Microstructure

摘要 为抑制发动机 TiAl 合金新材料的焊接裂纹、改善接头组织,采用整体预热的方式在 300℃ 和 500℃ 恒温环境下, 对 TNM(Ti-43.5Al-4Nb-1Mo-0.1B)合金试板进行电子束焊接工艺试验,利用光学显微镜(OM)、扫描电镜(SEM)及电子背散 射衍射(EBSD)等方法对焊接接头显微组织进行表征,分析了预热温度对焊接裂纹、焊缝形貌、晶粒尺寸、相组成以及硬度等 的影响。结果表明,随着预热温度的升高,焊缝宽度有所增加,并且裂纹在预热温度为 500℃ 时消失;靠近焊缝侧的热影响区 晶粒明显长大,而远离焊缝侧的热影响区晶粒出现细化;当预热温度升高,焊缝组织中 a₂ 相含量减少, y 相含量增加,预热温 度为 500℃ 时, y 相含量增加至 85.5%,成为焊接接头的主相,同时 a₂ 相的类片层状特征消失;通过提升预热温度,TNM 合金 焊缝位错密度和硬度有明显降低。

关键词	TNM 合金	真空电子束焊接	整体预热	显微组织
中图分类	号: TG456.3	文献标识码:A	doi: 10.1392	22/j.cnki.cjvst.202301002

TiAl 合金在 600~900 °C 具有优异的弹性模量 和比强度, 而密度仅为镍基合金的一半^[1-4], 经过数 十年的发展, 已成功应用于制造 GEnx 发动机最后 两级低压涡轮叶片中^[5]。TNM 合金是第三代 TiAl 合金材料, 作为β凝固合金在高温阶段存在一定比 例的β相, 更容易实现热加工变形^[4], 降低了锻造、 板材轧制难度, 具有良好的应用前景。然而, 目前 TiAl 合金的应用仍主要集中在低压涡轮叶片,限制 其拓展应用的主要原因是材料较低的塑性、韧性及 较差的可焊性。研究人员开展了 TiAl 合金的钎焊、 搅拌摩擦焊、扩散焊和激光焊等连接工艺研究^[6-11], 取得了一定的成果,但其焊接时易吸氧、氢等杂质 元素,增加了焊缝的开裂倾向^[12]。而真空电子束焊 接具有不易氧化、清洁度高以及焊接变形小等优点,

*联系人: E-mail: fupengfei97@163.com

被认为是 TiAl 合金航空零件的理想制造方案^[13]。

TiAl 合金无论是同质材料相连,还是与其他材 料进行异质材料相连,在无预热条件下电子束焊接 均易出现焊接裂纹^[14]。目前,采用散焦电子束局部 扫描预热方法获得了无裂纹的电子束焊接接头^[15-16]。 然而,该方法预热面积有限,加热温度沿深度方向 的均匀性也较差,容易造成预热区域和非预热区域 的组织和性能差异^[17]。在真空室外整体预热,再转 移到电子束焊机中焊接,可提高待焊零件的温度均 匀性^[13],但同样存在温度精确控制难度大的问题。 在电子束焊接真空室内设计整体预热方式,既可保 证零件温度均匀,又可实现温度精确控制,能够有 效解决上述问题,目前尚未见相关研究报道。本研 究针对 TNM 合金开展真空室内整体预热+电子束 焊接试验,探讨了预热温度对焊缝组织的影响。

1 实验方法

试验所采用的 TNM 合金名义成分为 Ti-43.5Al-4Nb-1Mo-0.1B, 其化学成分如表 1 所示。合金为锻 造退火态, 组织特征如图 1 所示, 主要为等轴 γ 相 和 α_2/γ 片层, 平均晶粒尺寸为 8.9 μ m, 其中 γ 相比例 为 85%。

表1 材料化学成分/(质量分数)

Tab. 1Material chemical composition/(%)

Al	Nb	Мо	В	Ti
28.54	9.31	2.44	0.012	Bal.

图1 TNM 合金的微观组织结构。(a) OM, (b) EBSD Fig. 1 Microstructure of Ti-43.5Al-4Nb-1Mo-0.1B alloy, (a) OM, (b) EBSD

试板尺寸为 50 mm×50 mm×3 mm,进行对接真 空电子束焊接试验。焊前采用钢丝刷打磨、清除试 板表面氧化皮,然后用酒精擦拭装配在真空室预热 装置内,进行整体预热和真空电子束焊接,如图 2 所 示。采用预热装置加热,在不同的预热温度条件下, 通过加速电压、焊接电流和焊接速度等参数调控进 行焊接,具体焊接工艺参数如表2所示。

图2 预热装置 Fig. 2 Preheating device

表 2 整体预热电子束焊接参数

Tab. 2 Overall preheating electron beam welding parameters

Symbol	Preheating temperature/°C	Voltage/ kV	Beam current/mA	Velocity/ mm/s
1#	25			
2#	300	120	7	8
3#	500			

试板焊接后制备接头金相试样,采用光学 (OM)、二次电子(SEM)和背散射电子衍射(EBSD) 对焊缝进行组织观察分析。金相试验采用腐蚀剂 为 Kroll 试剂(HF:HNO₃:H₂O=1:2:3),对于 EBSD 测试的接头样品,还需进行电解抛光,所用电 解抛光试剂为 60% 甲醇+30% 正丁醇+10% 高氯酸, 然后再在液氮冷却至-20℃条件下进行电解抛光。

2 结果与讨论

2.1 焊缝形貌特征及开裂情况

不同预热温度下的焊缝外观如图 3 所示,焊缝 表面成形均匀,无咬边、飞溅和未焊透等缺陷,沿焊 接方向焊缝宽度趋于一致。不同预热温度焊缝的 宽度略有差异,其中未预热 1#焊缝宽度为 3.34 mm, 500℃ 预热的 3#焊缝宽度增至 3.64 mm。焊接后 1# 和 2#焊缝均出现了垂直于焊缝方向且贯穿整个厚 度的横向裂纹,而 3#焊缝未出现裂纹。试验结果表 明通过提高预热温度进行真空电子束焊接,500℃ 预热可以抑制焊缝裂纹的产生。

图3 焊缝外观。(a) 25°C, (b) 300°C, (c) 500°C Fig. 3 Weld appearances (a) 25°C, (b) 300°C, (c) 500°C

不同预热温度下的整体焊缝形貌如图 4 所示, 焊接接头呈典型的钉形焊缝形貌。以两侧母材为 基底,焊缝(FZ)以联生结晶方式逐渐向中心凝固结 晶,以母材为基底外延生长形成晶粒;沿熔深方向, 焊接热输入能量逐渐降低,钉头部分能量高,根部 能量低。因此,焊缝呈上宽下窄的特征。预热后电 子束焊接接头热影响区(HAZ)的温度影响范围更 大,因此,随着预热温度的升高,热影响区的宽度趋 于增加。

- 图4 不同预热温度下的整体焊缝形貌。(a)25℃, (b) 300℃, (c) 500℃
- Fig. 4 Cross-section morphology, (a) 25° C, (b) 300° C, (c) 500° C

2.2 接头的微观结构和相组成分析

焊缝区的相分布图如图 5 所示。1#、2#焊缝主 要由堆叠的类片层状 a₂-Ti₃Al 相组成,但 2#焊缝的 a₂相晶粒较为粗大。1#、2#焊缝的相比例存在差别, 1#焊缝中有 97.9%的 a₂相,2#焊缝中 a₂相含量下 降至 91.1%,如图 5(a)、(b)所示。当预热温度为 500℃ 时,焊缝中残留的 a₂ 相类片层特征消失,相所占比 例也下降至 14.5%,而 y 相的比例则上升至 85.5%, 成为焊缝的主相,并以块状形式存在,如图 5(c) 所示。

图 6 为热影响区的微观结构和相分布图,从图

图5 不同预热温度下焊缝相组成图。(a) 25℃, (b) 300℃, (c) 500℃

Fig. 5 Weld phase composition. (a) 25℃, (b) 300℃, (c) 500℃ 中可知预热温度对热影响区相含量影响较大。对 于 1#和 2#接头, a₂ 相和 y 相含量从焊缝到母材呈现 渐变特征: 近焊缝热影响区主要为 a₂ 相; 距离焊缝 越近, a₂ 相含量越多, y 相含量越少, 最终与母材相 含量一致。热影响区晶粒尺寸不同于母材(图 1(b)), 随着与焊缝的距离增加而发生变化, 这是由于热影 响区的温度梯度很大, 不同位置的晶粒在焊接热循 环过程中发生了不同程度的相变、晶粒生长现象。

- 图6 不同预热温度下热影响区微观结构和相组成。(a)和(d) 25℃,(b)和(e)300℃,(c)和(f)500℃
- Fig. 6 Microstructure and phase composition of the HAZ, (a), (d) 25 °C, (b), (e) 300 °C, (c), (f) 500 °C

近焊缝热影响区(NHAZ)的温度高且高温持续 时间相对较长,组织发生β相变后晶粒长大,最终 1#、2#接头平均晶粒尺寸分别为 27.9 μm 和 24.5 μm, 而母材晶粒尺寸为 8.9 μm。远焊缝热影响区 (FHAZ)的温度较低,但仍出现了晶粒细化,平均晶 粒尺寸分别减小至 6.5 μm 和 6.4 μm。3#接头的热 影响区相组成与同温度下的焊缝类似,主要为γ相 及少量的 α₂ 相,晶粒尺寸为 10.9 μm。

由图 7 的 TNM 系合金相图^[18-19] 可知, 从液态 以极低的冷却速度开始冷却时, TNM 合金会发生复 杂的相变过程: $L \rightarrow L + \beta \rightarrow \beta \rightarrow \beta + \alpha \rightarrow \alpha + \beta / \beta_0 + \gamma \rightarrow \alpha + \alpha, + \alpha$ $\beta_0 + \gamma \rightarrow \alpha_2 + \beta_0 + \gamma^{[20-21]}$,同时相变的最终结果也影响焊 缝的开裂情况^[22]。焊接过程是一个快热、快冷的过 程,是一个不平衡的结晶过程,但焊缝金属在冷却 时会先生成全 β 相,而 $\beta \rightarrow \alpha$ 的转变直接以晶格重构 的方式进行。α相从晶界高能量点形核生长至晶粒 内部,内部的α相交错分布。在随后的冷却过程中, 高温 α 相的分解被抑制,主要发生 $\alpha \rightarrow \alpha$,的有序转 变,所得到的α,相最终被保留至室温,成为焊缝的 主要组成部分。而 γ 相与 α 和 α_2 的晶体结构大为 不同, 使得 γ 相从 α 和 α₂ 相中析出极为困难, 反应 较为迟缓。因此,未预热焊缝中主要是脆性 α,相,γ 相很少。同时,焊缝在焊后快速冷却过程中产生了 残余应力,而沿焊缝方向的残余应力最大,超过了 焊接接头的抗拉强度[23],这就会使得焊接接头极易 开裂。

在进行整体预热处理后,焊缝中 y 相含量发生 变化。当预热温度上升至 500 °C 时,冷却速度降低, 有利于 $\alpha(\alpha_2) \rightarrow y$ 的相变过程,此时焊缝中的 y 相也 急剧增加,成为焊缝的主要相。Chen 等^[24] 认为,焊 缝中的 γ 相具有良好的塑性,并在冷却过程中通过 塑性变形释放了部分残余应力。Xu 等^[22] 对焊缝中 *a*₂ 相含量与裂纹数量之间的关系进行研究发现,在 *a*₂ 相含量出现下降时,裂纹数量也会减少。因此, 500℃ 预热会大幅度减少焊缝中 *a*₂ 相含量,这对防 止裂纹的产生很重要。

2.3 硬度分析

不同工艺条件下焊接接头的硬度分布规律如 图 8 所示。预热/无预热条件下接头显微硬度均呈 马鞍型分布,焊缝和热影响区的硬度显著高于母材。 与 1#接头相比, 3#接头的硬度分布曲线有所下移, 即接头显微硬度整体下降,表明接头的塑韧性有所 改善。由于焊接是一个快速冷却的过程,焊缝的高 温 β 相直接转变生成 α 相,此时相中的 β 稳定元素 还未析出, α 相处于过饱和状态。在继续冷却的过 程中, α 相有序转变为 α₂ 相,其硬度大于 γ 相^[25]。对 合金进行预热后再焊接,焊缝组织发生变化,焊缝 的 α₂ 相减少、γ 相增加,可以降低其硬度。

图8 不同预热温度的硬度分布情况

热影响区在一个焊接热循环过程中没有经历 熔化凝固,但发生了前述的相变、晶粒尺寸变化。 由于热影响区呈过渡组织状态特征,从近焊缝组织 过渡为母材组织,因而呈现明显的梯度变化特征。

2.4 KAM 分析

图 9 为不同工艺焊缝晶粒的内核平均取向差 (kernel average misorientation, KAM), KAM 反应了 局部位错密度分布和残余应变。1#焊缝的 KAM 值 最大为 4.87°,占比 2.7%,而 KAM 值小于 0.5°的比 例仅为 31.9%,在 KAM 分布图上主要呈明亮绿色。 2#焊缝的 KAM 值最大为 4.87°, 占比 2.4%, 而 KAM 值小于 0.5°的比例上升至 57.4%, 在 KAM 分布图上 表现为绿色减少, 蓝色区域有所增加, 但仍存在部 分明亮的绿色区域。3#焊缝的 KAM 值最大为 4.87°, 所占比例下降至 0.6%, 而 KAM 值小于 0.5° 的比例上升至 73.7%, 在 KAM 分布图上表现为区 域整体呈蓝色, 仅部分区域出现浅绿色。试验表明 随着预热温度的增加, 位错密度显著下降。焊后冷 却过程中产生的位错塞积会导致应力集中, 这更容 易引起开裂^[26]。本试验结果也验证了这一理论, 位 错密度高的 1#和 2#焊缝产生了裂纹, 而最大 KAM 值比例的下降和小 KAM 值比例的大幅增加, 使 3# 焊缝焊而不裂。因此, 预热温度提升可降低 TiAI 合 金焊缝位错密度, 抑制开裂。

综上所述, a₂ 相和 y 相都是金属间化合物, 具有 明显的脆硬特征, 但 y 相在室温下发生变形时可以 产生机械孪晶, 这也是 y 相的主要变形方法。对 TNM 合金增加整体预热处理, 可以使得焊后冷却速 度降低, 从而延长焊缝在高温的停留时间, 从而促 进 a(a₂)→y 的转变, 因此在预热温度达到 500℃后, 焊缝中 y 相含量增加至 85.5%。此时焊缝中大量的 y 相可以通过机械孪晶吸收更多的残余应变。此外, 提高预热温度也可以降低焊缝中的残余应力, 从而 降低位错密度。最终在预热产生大量的 y 相吸收残 余应变和预热降低残余应力的共同协调下获得了 无裂纹焊缝。

3 结论

(1)通过整体预热 500℃+真空电子束焊接,有

效抑制了 TNM 合金试板焊后产生裂纹。

(2)整体预热可以改变 TNM 合金焊缝相组成, 无预热的 1#焊缝中 y 相含量仅为 2.1%; 300℃ 预热 条件下焊缝 y 相含量增加到 8.9%, 预热温度增加至 500℃ 时, 焊缝 y 相含量剧增至 85.5%, 并且 a₂ 相由 类片层状转变为块状。

(3)TNM 合金预热+真空电子束焊接焊缝位错 密度有所降低,同时大幅度降低了 500℃ 预热的焊 接接头整体硬度,是抑制焊接裂纹形成的原因 之一。

参考文献

- Clemens H, Mayer S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys[J]. Advanced engineering materials, 2013, 15(4): 191–215
- [2] Appel F, Paul J D H, Oehring M. Gamma titanium aluminide alloys : science and technology[M]. Wiley - VCH Verlag GmbH & Co. KGaA , 2011
- [3] Clemens H, Smarsly W. Light-weight intermetallic titanium aluminides –status of research and development[J]. Advanced materials research, 2011, 1263(278): 551-556.
- [4] Yang R. Adances and challenges of TiAl base alloys[J]. Acta metallurgic sinica, 2015, 51(2): 129-147 (杨锐. 钛 铝金属间化合物的进展与挑战[J]. 金属学报, 2015, 51(2): 129-147(in chinese))
- [5] Norris G. Power house[J]. Flight International, 2006, 169(5040): 42–44
- [6] Du S, Wang S, Ding K. A novel method of friction-diffusion welding between TiAl alloy and GH3039 high temperature alloy[J]. Journal of Manufacturing Processes, 2020, 56: 688–696
- [7] Cao J, Dai X, Liu J, et al. Relationship between microstructure and mechanical properties of TiAl/Ti2AlNb joint brazed using Ti-27Co eutectic filler metal[J]. Materials & Design, 2017, 121: 176–184
- [8] Duarte L, Viana F, Ramos A, et al. Diffusion bonding of gamma-TiAl using modified Ti/Al nanolayers[J]. Journal of alloys and compounds, 2012, 536: S424–S427
- [9] Du Z, Zhang K, et al. Microstructure and mechanical properties of vacuum diffusion bonding joints for gamma-TiAl based alloy[J]. Journal of Technology & Science 2018, 150: 96-104.
- [10] Liu J, Dahmen M, Ventzke V, et al. The effect of heat treatment on crack control and grain refinement in laser beam welded β-solidifying TiAl-based alloy[J]. Inter-

metallics, 2013, 40: 65-70

- [11] Liu J, Staron P, Riekehr S, et al. In situ study of phase transformations and grain refinement for optimization of laser-beam welding of a TiAl alloy[J]. Intermetallics, 2015, 62: 27–35
- Bird R K, Wallace T A, Sankaran S N. Development of protective coatings for high-temperature metallic materials[J]. Journal of spacecraft and rockets, 2004, 41(2): 213–220
- [13] Bartolotta P A, Krause D L. Titanium aluminide applications in the high speed civil transport[R]. Gamma Titanium Aluminide. 1999: 1-9
- Li Y, Wang H, Han K, et al. Microstructure of Ti-45Al-8.5Nb-0.2W-0.03Y electron beam welding joints[J]. Journal of Materials Processing Technology, 2017, 250: 401–409
- [15] Han K, Wang H, Zhang B, et al. Effect of thermal compensation on microstructure and mechanical properties of electron-beam welded joint for high-Nb containing TiAl/Ti600 alloys[J]. Materials & Design, 2017, 131 (oct.): 273–285
- [16] Reisgen U, Olschok S, Backhaus A. Electron beam welding of titanium aluminides – Influence of the welding parameters on the weld seam and microstructure[J]. Materialwissenschaft und Werkstofftechnik, 2010, 41(11): 897–907
- [17] Liu J, Li Y. Influence of partial heating or overall heating technology on X90 grade steel induction bend properties
 [J]. Mechanical engineer, 2014(12): 271-273 (刘金生, 李玉卓. 局部加热和整体加热技术对 X90 钢级热爆弯 管性能的影响[J]. 机械工程师, 2014(12): 271-273(in chinese))
- [18] Schwaighofer E, Schloffer M, Schmoelzer T. Influence of Heat Treatments on the Microstructure of a Multi-Phase Titanium Aluminide Alloy[J]. Practical Metallography, 2012(3):49

- [19] Clemens H, Boeck B, Wallgram W, et al. Experimental studies and thermodynamic simulations of phase transformations in Ti-(41-45) Al-4Nb-1Mo-0.1 B alloys[J]. MRS Online Proceedings Library (OPL), 2008, 1128: 115–120
- [20] Liss K-D, Bartels A, Clemens H, et al. In-situ characterization of phase transformations and microstructure evolution in a γ-TiAl based alloy[J]. Structural Aluminides for Elevated Temperature Applications, 2008, pp: 137–144
- [21] Schmoelzer T, Liss K D, Staron P, et al. The Contribution of High - Energy X - Rays and Neutrons to Characterization and Development of Intermetallic Titanium Aluminides[J]. Advanced engineering materials, 2011, 13(8): 685–699
- [22] Xu Q, Chaturvedi M C, Richards N L. The role of phase transformation in electron-beam welding of TiAl-based alloys[J]. Metallurgical & Materials Transactions A, 1999, 30(7): 1717–1726
- [23] Chen G, Zhang B, Liu W, et al. Distributive characteristic of stress field in electron beam welded joint of TiAl intermetalics plates[J]. Transactiond of the China welding institution, 2010, 31(1): 1-4 (陈国庆, 张秉刚, 刘伟, 等. TiAl金属间化合物电子束焊接头应力场分布特征[J]. 焊接学报, 2010, 31(1): 1-4(in chinese))
- [24] Chen G, Zhang G, Yin Q, et al. Investigation of Cracks During Electron Beam Welding of γ-TiAl Based Alloy[J]. Journal of Materials Processing Technology, 2020, 283: 1–8
- [25] Li W, Liu J, Wen S, et al. Crystal orientation, crystallographic texture and phase evolution in the Ti –45Al – 2Cr –5Nb alloy processed by selective laser melting[J]. Materials Characterization, 2016, 113: 125–133
- [26] Yi X, Liang Z, Zhang J, et al. Microcrack nucleation and Fracture Model for γ-TiAl Alloy[J]. Chemical Engineering & Machinery, 2019(1): 41-43 (易湘斌,梁泽芬,张 俊喜,等. 一种 γ-TiAl 合金微裂纹成核及断裂模型[J]. 化工机械, 2019(1): 41-43(in chinese))