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Advances in Two—Dimensional Magnetic Materials and Spintronic Systems
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Abstract Spintronic systems, where spin replaces charge, are known for their high speed and low power con-
sumption. Magnetic random access memory (MRAM), a typical spintronic system, is seen as one of the best candi-
dates of next—generation memory devices. In the field of Spintronics, two-dimensional (2D) materials are of increas-
ing attention due to the high—quality surfaces, the scales approaching the scaling limit and the unique physical prop-
erties induced by their 2D structure. In this article, we outline the recent advances in spintronic systems based on
2D materials. First, we introduce some 2D magnetic materials and their common properties. Next, we discuss sever-
al main spintronic devices and representative works. Then we come to the modulation of magnetism based on 2D ma-
terials. Finally, we provide a brief summary of the whole article and an outlook for future development.

Keywords Microelectronics and solid-state electronics, Two—dimensional material, Review, Spintronic
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FERE I VK 5 T s A A , I R BPRh “FEfbs  Y lar magnetic anisotropy, PMA) #f 89 H i€ % # 5
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Fig.1 STT-MTJ and SOT-MTJ. (a) STT-MT]J. (b) SOT-MT]J with
an out-of-plane spin polarization. (¢) SOT-MT]J with an
in-plane spin polarization. Reproduced with permission

from Ref."! Copyright 2020, American Chemical Society
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SRR . 46 R 22 B — AR BR W B REFI R 228 — 4k J
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Tab.1  Part of the two—dimensional magnetic materials confirmed by experiments
B e TR WA Jr ) WETER AR IE (TFIR3C 225 30k
Materials Electronic Type Magnetic Type Magnetization Magnetic Transition Temperature/K Ref.
AFM 14(Ty)
CrCl, Weak anisotropy [10]
’ FM 17(T,)
CrBr, M Out-of-plane 34 [9]
Insulating AFM
Gl {eren-l) Out—of—pl 45 [6]
r ut-of—plane
’ FM !
(odd-L)
VI, Semiconductive M Out—of—plane 50 (bulk) [11]
130 (1 L)
Fe,GeTe, [12]
’ Metallic FM Out—of—plane 220 (>4 L)
Fe ,GeTe, 280 (12 nm) [13]
- 65(1L)
CrSe, Out—of—plane [14]
110 (16L)
Metallic FM 200 (1 L)
CrTe, Out-of-plane [15]
300 (=7 L)
VSe, In—plane >330 (1 L) [16]
~120 (15 nm)
Cr,S, Semiconductive AFM In—plane [17]
o >300 (45 nm)
CrSe Metallic M Out-of-plane 280 [18]
AFM(even—L) 8 (3 SL¥)
MnBi,Te, Topological insulating Out—of—plane [19]
- FM(odd-L) 25 (bulk)
FePS, Out-of-plane 104 (1 L) [20]
MnPS, Out-of-plane 78 (bulk) [21]
Insulating AFM <25(1L)
NiPS, In—plane (main) ~130 (2 L) [22]
155 (bulk)
Weak anisotropy (2D) 302L)
CrGeTe, Insulating M [5]
’ Out—of-plane (bulk) 61 (bulk)
a—RuCl;  Mott Insulating AFM Out—of—plane - [23]

*SL=T7 Jii )22 , & MnBi,Te, 1) —
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AEAT , A8 e B 2 E A DA S LY
THEMN B DRI BRI 2, — i 2
HOH e 7R 55 HE A 53— o (0 B S
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MTJ (%) f FHL (magnetoresistance , MR) — & %%
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Fig.2 Typical structure of 2D MTJ. (a) FM metal electrode/2D
material/FM metal electrode. (b) FM metal electrode/NM
insulator/2D material/FM metal electrode. (¢) FM metal
electrode/vdW heterojunction/FM metal electrode. (d)
2D FM/2D NM/2D FM. (e) Gr electrode/2D magnetic

barrier/Gr electrode

PR Ay B 2 4 BH. (tunnel magnetoresis’[ance, TMR) ,
W E XK TMR = (R, - R,) /Ry Fo P R, 5 R, 5%
SR IO R 2 AR O 1 AT BRSO AT, R
HE ) AR, FESZER MT) HR TMR A B2 1E
{8, B R, JFAR—E/NT Ro 5 SCHR X4 K i)
FufH TMR, 20 &P 17 745 H B 47 05 — 46, B
TMR., = (R, = Ry) /R, XAERAERY B2 N 77
5 IEE TMR /Y Lb 3. 5 I8 2 MT) 1) TAENLE 5
WL 1Y A e A A 56 TMR AT DL & Julliere ™45 1
A0 TMR = 2P, P, /(1 - P, P,) 5 F et AL Ik &
A, b PR P A3 i PR )2 1 F e AL
21 FM &£ EBR2D#HE/FM £ BB
K H Gr A8 R A # v 4] )22 4 A8 9 B2 T 2007

A, Y] Karpan SRS FAFGE TR T Co Ni B
Cu ¥y MTJ 1 Gri [ JZ2RYER B, GrAI(111) a1 Co.
Ni il Cu Z [B1 47 2 B 4F 1) di ks W BUC L . A, 78
G, BOK BB B AT 1 725 A7 78 48] S 4 [ o
[ K a5, 1 Co A Ni 763X HL A /D [ RS, ik ol
BEWRE — R0 B HEUE I IS . Karpan 24 B i ]
18 3 7T 42230 56 26 /9 100% (| P, | — 100%)
I TMR AR H 43 Z50A o

SR, XF T FM/Gr/FM MTJ B 5 IR 9 9 s
Wk /) TMR . 32 1, WA 95 45 31 A9 K 240
TMR 2 XF (B AR /N T 197 F1 3k F 15 G5 4 6
MTJ —F¢ , B PR X MTY BPEREA &tk P .
MRS L rh B EE R P iy FM 2R 25 2 9t
A EE " E IR L, Cobas & HEH T —
B T 4 % 2 AV R R AL R T2
TMR A% T 10%-

BT LR, 78 FM S B b AR K Gr(GE
WO CVD ) TR & ik, AR T2
WK 3 FrR o 3K — 7 AR B 5% AL — R 5
| TMR | > 10% B P8 75 TAES, Al T, )]
MTJ X FM/Gr 5t 1T 1 e 4 £ 14 5. 04 WF 5 i 252 JE
— R E A 4544 g FM/Gr/ALO,/Co™, Hirf ALO/
CoJ2& H e AL R A €3 Hr % (spin analyzer) , H
TEM AL S +32% , FM/Gr FH 1 BY B e A6 1] i
Julliere 2245 o 5T BB J7 ik |, 2020 4F Pique-
mal-Banci [ —F TAEHGE 7% Ni/Gr FH1f H iétk b
RFFE . 1E Ni/Gi/ALO,/Co &5 ¥ h 715 T —12%
) TMR , 3545 5] Pl = —20% , Hrp FFR“Tunnel”
FORAFTERE 272 ALO,. 1 TMR 5 %1 H i fk . &
JIHBAER T Ni/Gr S TH F € U8 % 30N I AETE . i 7E
WA ALO, B% 27 2 B Ni/Gr/Co 54 v | 545 T A 244
}\iﬁﬁbﬂﬁ *% i‘_# **’JE’J TMRL%§+82% X

{ETW jt?ﬁﬁuﬂﬂ [ Pt A, K F 3 F
Co/Gr/ALO./Co MG Plued . SRTIRZ)ZE Grh iy A
i@ U8 e 280 L AN [ A 8 AR X 3L 3 ] 4 3 &80
(proximity effect) e fif B B2 A7 22065 1Y 35X — 470«
M3k (ab initio) T 45 5 7R, Co A1 Ni A9 AR i Gr
e &R T H RIS L, 78 3% oK BB B vT R =2k
Kt ZHA e (S0 E A TR ) |, MiA% B X —
245 Co 5 Gr 1] B B B A .

B T T Co Ni LA KL 54 4 (NiFe) 5 Gr ]
JZAL A MT] DUAE , i85 V22 36 T HA b kA R 1Y
FEAAZEAE MTTAF 3 T SEERUE 5 53 40, A
UL FC IR i S5 O 5 4 Sy e ) 2 ) S B 3 5 B
T R AR RN AR SR ESN AR Y 2 AH
W4 s M AR AR S AL SR S T
%) DC T Tr) S B2 2, B 4E A RHE FM )2 26 1 A=
KW T2EARFBER, X — 800 &k R A M4
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Spultering of Exposure o Full coverage of

epitaxial Ni(111) ethylene at 600 °C graphene monolayer
(a) (b) (c)
Gr/Ni(111) spin source
Sapphire Top Al;O4/Co
subslrate “ spin analyser

(d)
El3  FM/2D/FM MT] SRl T2 () Ni(11 D) ATk A=
K5 (b) LA A HTIRAR A IR CVD 2B K Grs (c) S8 428
T NI(LT1) T AY B2 Grs (d) FF 5 0627 B 30ss 1R 1%
(LB R 200 F30K ), A4l X 3 A= K ALO/Cot*
Fig.3 A typical fabrication process of FM/2D/FM MTJ. (a) Ni
(111) is epitaxially grown by a sputtering step. (b) The Ni

(111) film is then exposed to a low pressure CVD step us-
ing ethylene as a carbon precursor. (c) The full coverage of
the Ni(111) electrode with an epitaxial graphene monolay-
er. (d) Optical image of the patterned Ni(111)/graphene
spin source (scale bar corresponds to 200 pum). A top
AL0,/Co spin analyzer is further deposited on patterned
micro—junctions. Reproduced with permission from Ref.

¥ Copyright 2020, Maélis Piquemal—Banci et al
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M T ARG A RAR e A 15 B 45, T 4
BRWEAA R MTY AL AL L, B AT 25 AR B
TREZM . AR EEN AT e R — 4k
R0 v B J2 ) RGP E AL B AL R A5 A MTT, T —
ARG PR RE T )2 9 DR I R P IR 3 45 (spin—fil-
ter MTJ, st-MT)¥7EF —5h i, HAEl, 75
P SLIG I () — 4E AR MT) £ 85T FCT, HEA
220 K HZ ikl ny Jm R, — @ s Sk
PE L5 B RE 1, B0 2 FCT RE 5 T LLE i B
FEHUBCR B AT 4%, DR e 7E — e Ak i AT ek A5 3] )
2R .

Wang 55 E 2018 4F & & T X 2 F FGT/h-BN/
FGTZ5F9 1/ MTJ 1) —JiAfF5E . 4.2 KR, x5 f
WLEL ) T 160% (175 TMR 5 {H 1 4% 1A [ e
A Bt o5 I B2 o e PR R AR, 7E 180 K AR 4y

15% 1 TMR. Albarakati 25 5 Lin 2557 43 51 4t 16
TR A B0 RN MoS, B R Hp [R] 2 A 45 5L, SR AR 1)
MR 7351 ~1. 6% (50 K) 5 4. 1% (10 K) . b4k, 5
Lin [f]— B4 A9 Ha 5 JE47 T £ )2 FGT [F] i 45
MTJ B, 76 10 K F A2 FGT R i 4s h A 3L T
2.12% M MR ; MTE = 2858 h 58645 T 1. 35% B
K MR, L MR 4 0. 52% ) H (a1 2S5 sz ) oL st
RS SHR K MR AR 0. 48% 5 1. 27%. 27511
WELE T )2 FCT B8 11 4 AR, Bl T 1
TLier bl el it hmEssT Lol
L) EeEnAS 0TI S R ) E A TR] A X R
A2 1 AN [ A T [ %) 200 At 2 0 e 380

T3 — 7T, RSN G A i Ak BURD £ 16 43 BT
DT, A — R A B TS TAE . Zhou
A T — P T 1T-VSe,/2H-MoS,/1T-VSe, I
MTJ, 7£ 300 K T 41 2 i5 5| 846% 1) 5 TMR. Feng
N T — B 3L T L2 VCL/CoBr,/VCL, Y MTJ,
TMR A ik # 4. 510" %, Su VW& T —F
3 F Fe,GeTe Ja-In,Se/Fe GeTe,(m,n=3,4,5 H m#
n) 1) 22 8k 7 (multiferroic ) MTT (MFTJ ) , 4% 5 22 3 1
PSS [E ) TMR, 435310 R 89% 55 64% 5 LA K P4~
[7i] %) B BELAS: 5% 07 PO AS (7] ) B B — 1T B e (resis-
tance—area product) Lk 0.17/0.31 5 0. 12/0. 19
(Q-pm?) ,/NFAEGESERT HE MEFT) 254F .
23 sf-MTJ

st-MTJ BRI LA HE S A B 4(a) TR . 54558 MT)
AN, E B, MT 9 B AR R AR R, T 4 22 2 02
T 1 5 R 3 4 22 ST SR A DX« R Y R
RS R 2R . AR [F] A H - T 1 R 2 34
BUAFE, —NEENEIHE, A ARZS5EEZ
W SAT , 2280 A Ji L 7 T X6 PR A AR I 3 &z
AR K % 2 FL I, T /D00 1 I FL - TGS 1 48 1 1Y)
g AR ROVAT , WG TE 280 DB T HR R
X —MEHE 2 5 A e BB R DN

2018543,Song[621,D. R. K]einrm,Wang“ﬂ,Hyun
Ho Kim 2556 J5 18 1 Crl, A4 48 75 TMR 3 B %
ZEHLIT . Song Z R Y, BUZ Crl, 1Y )2 18] S 4k 0GR
B A HAS I A — S BAR A X BESE I MTT, 4n &l
4(d) i  AIMAN G S, W52 Crl B BCFAT L bR
ZEHLYL /N 5 AN RS R G S , (W2 Crl, 175
17, R ZE LR, e 45 51 530% Y TMR. 4 CrlL )2
Bt — 2 nEE , TMR #E— 2538 K, U2 G, TP A5 )
19000% f TMR, 41 & 4 (¢) (e) If 78 o Hyun Ho
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FHAN g7 207 Crl, RV, R R R 3 CRE ) 34
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p-pBIZE p-n A, ZER LI, XW)Z Crl,, p-p 5 p-n

i .
i 2
Noamagratie | Tioed e Nermaget
Electrode gy Magratc | Becarecde 2
1 1 :
(a)

T 1 52459 24 +80% B TMR, 1M 75 p-p/p-i %341 FAb
S5 8 IE TMR (~+1000% ) , £ p-i/p-n %31 FAb 5675
HE T L TMR (~ —10000% ) o LAk, 78 1 40 i 3 i
T, AT L Gk A R Gl B R AT R 4 O R A
TMR (P )2 : ~35%, = )2 : ~200%, P4 JZ : ~400% ) , i
BRI RMEH T CrL )28k, SR, AL 20 3 436
B, i A RERR I, R 28k HREFE(RIE T T
VR 5 Wi B W, 64T 0 P 2 A s e — AN T
] 5 AR, BT ROBRRERA & AR R SR 1 SRR LA

(b)
20000 18T
m T ¢
W0 i
g 1s000r E L 1) 1
= oy %l |
Ewouun ol TIaE i
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Fig.4

@

®
B4 sf-MT)5 ATERR RS IAE . (a) sE-MTJ IPIEAHEE; (b) 2T CrLiY sE-MTJ*; (c) PUJZ Crl, st-MTIFE IS MGSS F AT . b
300 mV A&, b5 L i BERE I AR AL T 0 [ T B REIR — A0 (reflective magnetic circular dichroism, RMCD) Btz
BYAEAE 5 (d) s-MTT BIRERS /RS, L AFM; R :FM;(e) PUZ Crl, sf-MTJ TMR 51 EE9 9 2R , it is Al 1k 190009, Jfi& . A
[l T AR 2 AL S D R OG5 5 () I RS 2 R A s 1 ™)

sf-MTJ and spin tunnel field-effect transistor. (a) Original concept of sf-MTJ. (b) Schematic of sf-MTJ based on CrI3. (¢) Behavior

of the four-layer Crl3 sf-MTJ under out-of-plane magnetic field. Top: tunneling current as a function of out-of-plane magnetic field

at a selected bias voltage (300 mV). Bottom: the corresponding RMCD of the same device at zero bias. (d) Schematic energy dia-
grams with AFM barrier (top) and FM barrier (bottom). (e) Calculated sf-TMR ratio as a function of bias. The highest TMR reaches

19000 %. Inset: tunneling current as a function of bias. (f) Schematic of spin tunnel field-effect transistor. (a) Reproduced with per-

mission from Ref.[69] Copyright 2000, American Institute of Physics. (b), (¢), (¢) Reproduced with permission from Ref.[62] Copy-

right 2018, The American Association for the Advancement of Science. (d) Reproduced with permission from Ref.[65] Copyright

2018, American Chemical Society. (f) Reproduced with permission from Ref.[70] Copyright 2019, American Chemical Society
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IS ASL R IKAE . (a) ASL #Y & FE5H 1A 5 (b) ASL 3%
fE. 22« BRI ; 47 : Hanle HE 80N, 1 B2
507 (single layer Gr, SLG) g4 71 - W2 83475 (bilay-
er Gr, BLG) #¢4; F - EEE%‘J@?(trilayer Gr, TLG) 5(c)
iz 28 5 Wi H TR a6 R . B ATE
i s ATEY B ED ;T FAEY B EE AT
Fig.5 ASL and its measurements. (a) Schematic of ASL. (b)
Measurements of ASL. Left: spin valve test. Right: Hanle
spin precession test. Top: SLG device. Middle: BLG de-
vice. Bottom: TLG device. (c) Parameters of spin trans-
port as functions of the carrier concentration n in Gr
channels. extracted from (b). Top: spin lifetime 7. Mid-
dle: spin diffusion constant D_. Bottom: spin diffusion
length A. Reproduced with permission from Ref.”" Copy-
right 2020, American Chemical Society
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tector) I FE LAY . 7 A BEFE A B, B IE I FM
FL B T 0 AR A, A e P, 7 H B /9 BT 7 A
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e L B R, TR AT DA B — A2l
Sh NI UN VRS D SR BURIBIER 54 SEUN
A e H [l %, 78 FM HL B AL R 2R (spin accu-
mulation ) RN F5 A6 R B R AR S A o FURA S
{18 T B AR T 79 A 4 1 P A P R A D 1] My DA
ML BB IIRE . T F 3 Y T A H R A 4
SETEST B R A [] f BLEAT , R O — A PR
MAEJR I A JiE 1 (nonlocal spin valve, NLSV) . %5 —
T3 T A A e e % R, U BB I STT 45 OB 46 Hh 2
HL A A T 1 DT S SIAF-idt DD RE 5 PR A2 A0 Ty 1w 52
EZINSD BN DA LR I R I Rl T D
SEI A 4% (repeater) B B A% 4% (reverter) I T HE, DA
MEE L B % RE

NLSV 5 3 AR 1Y R AE J7 125 0 e 1 2800 00 3
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vh it i G H R R AR T 8] My, P AT BIRES
TR AEXTFRYE , M.y, , 235005 B, A= A —
ARG : ARy, = AV /T = (Vi = Vi) L K vy
V3o R AT 5 RO A R H L TR TEA
P o 1M 7E Hanle WD, BRI H, 5 BT
M.y, , Ry TEH, = OTAL B —ANE(4Y ), T7E K1)
H, FETRE. v LGE L F RS UE NLSV
TIaE, IE BRI ARCE | B BEY BUK EE (spin dif-
fusion length) . [ &4 HH % . I E A3 i 55 248,
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W E TR AR S EE AR 2R M LM . &
J& ALY 2 UL R 2 E AR A4S ALO, MgO |
TiO, "7 L S —Fh R R A B ELEY
VE R bs 28 2, A 46 AL A B8 0 (f-Gr) A A A 5505
S KT R LR TS Y AR TT
W T 63% F116. 5% FITEARLER

R 7 A S LASN oA (o At — 4E A kLl
o 45 B [ 28 484, R 8% . WS2/Gr/f-Gr ) J TaTe,/
Gr 55, WA I H A BEFE RS A LA S 55 i3t 14 g
MIBFZE S YT ATER®E S ATEm T8 F K
SR SERE WA 1) AR DO FE DL 3, DA e s AR
TEFR PR REA B, X — AT A 1 — AR R T

4 “HwR SRR

TE A 1 b A TR 08 5 1) 4 37 2 PRUUE T AR
B, 7R AR B R B BB AE Y [RIB 38 23 3 B ™ (1)
EE 7/ L1 F 1N S 3 o0 e 3% i 9 % S S SO B UL | 2 3 o E
RARMRME N Z —, X —FFEANHE R
5 HE R 5 OO R ) 91928 DA R i AR ] 48 =R 7 vk, B/l
PRI B F 7 vk TS —Fha] LUE o R F A
Ak B B ) 2 5, 9 H B A i 5
4.1 ETSOTHRREAEAE

X R P A R P v 3 O A S S PR AR L
STT 5 SOT. STT Wiy A Jie M sh i K I8 T 5 0 —
PER R 22 0, 1T SOT HR % 1 i€ £ 3l &2 R R T SOC
BN o UL SOC ML A F e 2 /R R (spin Hall
effect, SHE) 5 Rashba—Edelstein 2%V » 7ERI &
I AN ) 4 32 380 0 782 R L S A0 I, JRL T 1) AN [+
M s, I A AR R R — RN, 32 5
FE 2 AR K 5 J5 35 R R T 4 Al 3 1 119 25 () 2 3
X BRI RB R, S —Fh SR TR0

18 5 % Landau—Lifshitz—Gilbert (LLG ) J7 £ 3f
FEIR TR M OG- [a] (R AR , HOE A

%l =—-yM x H, + aM X dd—]'tl +oih o %
& T IR BEARN S A S . T RLaroh =
T, 55— M SE AN 7 0 3t By 5 55 31k BH e 3
PRl M5 AT R I R ) 5 B I A
MRS = A R AR AR . 7E SOT Y, 7, AT LA RL D
I RISy - 1E HTF Mx (Mx o) )25 B JE (damping
like) SOT, LA J& IE b T Mx o ) 25 3 (field like)
soT, Hrh o7& A ERL R

XL 58 SOC 2 IR FE 4 h 7E X Pt Ta W 45 1

S JEMEL Lo MAE ZHER RS, SOC 2 5T -
BAEPEWREM B, —J2 WA MX,(M=W,
Mo, Nb, Pt,. .. X=Se,Te), J& T TMD K% —& 51 -
S5 8 £ i Fa 2 A 2H TMD 2 SR bR A TR, 3%
FEREREN AR A 1T AH B L P AR, EL A (IR 45 4 %
Bk DL KK 4 8 S vk, B A S B 8 SOT Y
J1o FEXIEAARL T & BT B A 1 2B JE SOT, fi
W) B B 98 5 253 (8] s 3 6 FR P (space inversion
symmetry ) il BRI F Bk (HAEXTFRIEANT 2 13k
254 B NbSe, H, 49K AT LI EE 2] AR 44 48 SOT™ 4
B LA R T R AR AR IO AR A R 04 X BRI R . )
— B E A Z4E SOC M B}, J& T BiX, (X = Se,
Te) KIEMAR NG AR . XA R E R P42k, R
FE T S AL, DRI AT B S P A R 1 SOT 5 350K
AR B 27 5 I R & B, (BiSh) ,Te,/CoFeB 4% #4)
FRORT LS P 3K 8. 33 (0. 65) [ SOT UK, it i T
1 48 4 J& # B} (Ta: 0. 12" 5 Pt: 0. 1277 ; W,
0.3 ) , W & T Hi & MX, # % (1T-TaS,:
0. 25+0. 03"") .,
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PEBIE: s A PO, 127V SOT &K, 115815 %) 8
B 05 FGT MR MR AL 58 B2 MR 1. 6X10* A/m, AR
PR (3. 21%10° A/m) /N T — D3 E 2% . Moham-
med Alghamdi SENOTL T T 2R 55 5 PUFGT 4544
I B R A7 10" A/m* 9% . Vaibhav
Ostwal Z"HIFSE T Ta/CCT 45 H Y SOT LA, I
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FH  ZEBEJE SOT RUH 13k 0. 25+0. 09,
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Tab.2  Part of the two-dimensional SOC materials confirmed by

experiments
B FALTTk FITE AR LR 275 3k
. Characterization  Spin conductivity, o (X
Material . 5 . Reference
Technique 10°[(A/2e)(Q-m) ']
MosS, SHH' =29
[97]
WSe, SHH o, =55
o,=9+3
ST-FMR*SHH o’=8=2 [89]
o, =3.68+0.8
Td-WTe,
o, (Oersted field)
ST-FMR/SHH o,=4~60 [98]
0,=6
o, (Oersted field)
B-MoTe,  ST-FMR 75 =44~ 80 [99]
—MoTe _
? 0,=0.04~1.6
o, ’=0.026 ~ 1.0
IT-PtTe,  ST-FMR o,=20~160 [100]
o,=0~40
NbSe, ST-FMR 0,=0~13 [90]
o,=—2~35
1T-TaS, ST-FMR/SHH o, =1490 [96]
Bi,Se, SHH o.=32
Bi,Te, SHH o = 147
o, =146 1]
BiSb),Te,/Col'eB
Bish),Te,  sHHMoKE'  (BISPhTey/CofeB)
’ o,=106
((BiSh),Te /Mo/CoFeB)
BiSe, ST-FMR/SHH o =145 [101]

4 1:SHH : second harmonic Hall, IR

{12 2:ST-FMR : spin—transfer—driven ferromagnetic resonance , [ i€ /1
Hi-HRmE IR o

7 3:MOKE: magneto—optical Kerr effect, TG T8 IR BN o

VE4-T:0, 0,00, 47519 5 257 SOT 2 HLE SOT 41
4 SOT HiIFMJEPH S SOT MDY A HERE /K HL

RIS o B S B A L P 37 ) R M AR Y — R AR
2 14 H (magnetoelectric, ME) 500 » XUJZ Crl, J&
e NI — RN R RE S ME RN HAE2S
1) J52 368 ) R A A ke ) 6 8 PP A A DRLIRGTE B ol
HOANTEAE 3 o 55— BLBUAR A2 A2 R M, R AR T
S EREAH , A3 8] 52 BRI A B SE, ME 2500 1
P o ME BN 2% 2048 W BRAF (metamagnetic transi-
tion) F Il 737 , 25 SMEG G e Z A B AT I, 185 HL 37
S5 T S EE AFM-FM (9 ] 8RR A%

T — P 73800 2 i L 842 (eletrostatic dop-
ing) o [FIFELL Crl 1, 50 F 80N A TH] # LB
Z=n]AE FH T 502 R0 BUZ Crl,, 78 B0AR 55 0 37 1Y) [R) st
W2 RN ML T R L2 Crl, L BT84

CIE ) (4555 37 MR s L YR R 25 T B, 28 X
B Z s MRS Crl, v, 5w B & L T ik
TR, FE+30 VA HE 3230 05 [ A, i B 240 41 )
T AFM M FIRE . BF5E & B, FEE Gl b H
S8R 114 A1 S A5 B B Ak, SR 0 e — Ak
W3 0 S 1) AN, I IS 3 ok e E 4B 2 R L S
HZ Col, R B 5 (R R — Rk Y, TE
WA R TENES T RS WA Re =
FAK . TMERUZ Cel, 72— /N TG 537 1 S0
Y, AT LA ) L 48 4 S FMOAE 5 AFM AR ]
W R A, HLAMIEE AT ] BR AT LAEEIE O,

Bevin Huang %5 ““7EXUZ CrI3 & B T 2RI 45
HORINF R T 0 T F AFM ALY MOKE 155 54
FEELMERX R, AR S50 SME S 5
Wang %" FE CGT B T LB 2451 E K M, -
T TR 2 MG B AR 37 0] I AN UK
ORI S E FCT &L T 8 Mt Al X T 5
FUPEE L O RRT 3 )2 FGT I T 298 100 K, IiFE 1. 75 V
A2, 39 VA& F ik 300 Ko #R11, S 828 FBOR
AEZ AR BRAL AE T 25 5 32 B4 4+ 300 F 1 i L B
e, AR HRgik TR 2.

43 WESERIAERX

AR R 2 32 , A R T RN R AR e g e ek A 7
PRI IR T T NS SR SR I 2548, AR
Al PRI R, 2 R BRE L 5 il (easy axis) AR,
SR REATT 0 B R . 55— T, A AT LAGE i
JEREEER P p = N0k Gy A BUONGI B 0] ) R R R e
B E, ool gl i 42k s (ferroelastic) M BMAAE B2k,
PR LA 2 — P A ) (B FR 2 g =

2019 4F, Song 55 " HIF5Y & L, # 7K e 7 (hydro-
static pressure) 235 | & Crl,i9FIAS . 2. 45 GPa i 5%
45 X2 Crl, N AFM AH %% 24 FM AH 5 11 78 = )2 Crl,
o [RVRE R R 5 T H B0 T PR AFM ARG WG , 5 —
JETOIE T A 1) AFM AH 4% | P A~ 5L 16 2 o AFM
a1 L7 8 RO IR S L AFM
FHRE S , A —A> FMAS A5 — 4 AFM A& 5
et L), B RS
WEE LTS8 A Akl s — b i AL Al i, ] —
B ] Li S5l R T 45 R . Wang 55 7E
FGT 1 & B, 0. 32% 1) 17 78 B2 LA 5 il 375 DA
117 mT L F+ 2 ~300 mT, I8 24 B 242 0. 71%
R 22 0. 65% 5 > I i 37 R AL, S 300, 722 i By o e
B, SR X — 2 B2 7= AR B RO () SE B . Zhang
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El6 FCTHINAFE . (a) fFEst/R B R . ZRUEPH BUEE /R 25 (Hall bar) 2544 5 (b) i H RN 28 FAE AL 5 (c) 0.65% 5 0.71%
AR R FifiRE7 AR AL, 7T A B ) H AR 5 (d) 0.2 TRES IR BT N AE SR REA T T es . JIE R B AR

Fig.6  Strain modulation of magnetism in FGT. (a) Schematic of device, which is made into the Hall bar structure. (b) Coercive field H,

as a function of the magnetic field. (c) R, as a function of the magnetic field at the strain of 0.65% and 0.71%. An obvious change

in H_is observed. (d) Reversal of magnetization induced by the change of strain at 0.2 T bias. Inset: the change of R_. Repro-
duced with permission from Ref."""! Copyright 2020, Wiley-VCH GmbH
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