高速钢刀具激光熔覆 AlTiN/NiCoCr 涂层的 组织及性能分析

张亚标^{1*} 李勇峰²

(1. 新乡职业技术学院 机械制造系 新乡 453000; 2. 河南科技学院 机电学院 新乡 453000)

Modification of High Speed Steel Surface with Laser Cladded AlTiN/NiCoCr Bilayers

Zhang Yabiao^{1*} ,Li Yongfeng²

(1. Department of Mechanical Manufacturing Xinxiang Vocational and Technical College Xinxiang 453000 China;
2. College of Mechanical and Electrical Engineering Henan University of Science and Technology Xinxiang Henan 453000 China)

Abstract The porous AlTiN ceramic layer and compact NiCoCr alloy layer were consecutively synthesized by laser cladding on substrate of high speed steel. The influence of the adhesive transition AlTiN-layer on the micro-structures interfacial adhesion and residual stress was investigated with X-ray diffraction and scanning electron microscopy. The preliminary results show that the AlTiN transition layer makes the difference. For example, the 146 μ m thick AlTiN layer comprising the randomly oriented equiaxed grains , in α -Al₂O₃/Al₂Ti₅N/Rutile-TiN phases , and quite a few Co and Ni diffused into and deposited on the pore surfaces significantly increased the mechanical-strength/interfacial-adhesion and considerably decreased the pore-sizes and residual stress possibly because the interfacial diffusion/segregation/reaction/reconstruction greatly increased the compactness/density/bonding of the 200 μ m thick adhesive layer. In addition the stepped fracture was observed.

Keywords AlTiN, NiCoCr bond layer, Residual stress, Laser cladding, Bonding strength

摘要 为了提高高速钢刀具的综合性能 通过激光熔覆的方式在其表面制备 AlTiN/NiCoCr 涂层,通过实验测试的方式 表征了该涂层的组织结构与各物相成分,并测定了其界面结合性能。研究结果表明:激光熔覆 AlTiN/NiCoCr 涂层形成致密组 织,各层间形成紧密结合状态,陶瓷层厚度接近146 μm,形成200 μm 左右粘结层。在陶瓷层内形成了大量无序排列的等轴 晶,获得更高强度的陶瓷层。涂层中主要存在 α-Al₂O₃,还有部分 Al₂Ti₅N 与 Rutile-TiN。采用激光熔覆工艺有效降低了界面 的空隙比例,获得更加致密的界面组织。陶瓷相内含有 Al₂N₃Ti 三种元素,在微孔粘结层内存在 Co 与 Ni。AlTiN/NiCoCr 涂 层获得了比 NiCoCr 涂层更高结合力和更小的残余应力。试样发生了台阶断裂,形成了凹凸变化的表面。AlTiN/NiCoCr 涂层 形成更加平整断裂界面,在断裂面区域形成了众多微孔。

关键词 AlTiN NiCoCr 粘结层 残余应力 激光熔覆 结合力 中图分类号: TN246 文献标识码: A doi: 10.13922/j. cnki. cjovst. 2020. 07. 02

纳米陶瓷具备高硬度,在速钢刀具制造等领域 发挥了重要作用^[1-2]。为了提高金属表面强度与耐 磨性,可以在其表面制备一层纳米陶瓷膜来起到防 护效果,使其获得更优的表面性能,从而更好适应某 些苛刻的工况条件^[3-4]。到目前为止,已经形成了 多种纳米陶瓷涂层的制备方法,主要有热障喷涂、等 离子喷涂、激光熔覆等,考虑到基体组织和陶瓷结构 具有不同的热膨胀系数,通过以上工艺制得的纳米 陶瓷涂层中通常会出现微裂纹缺陷,同时也无法和 基体间达到紧密结合的程度^[5-6]。因此需要利用粘

604

收稿日期:2020-01-03

^{*} 联系人: E-mail: raobeiyou9720@126. com

结层来构成过渡层,从而有效克服以上问题。

近些年以来 已有很多研究人员对陶瓷涂层的 各项性能开展了实验分析。王东升等^[7]采用等离 子喷涂技术制得 ZrO2-7% Y2O3 热障涂层,之后对 该涂层的微观组织结构、抗热震性与表面硬度进行 了表征。田宗军等^[8] 测试了激光重熔工艺制得的 AlTiN 陶瓷涂层物相结构与组织分布形态。高雪松 等^[9]选择激光熔覆工艺制得 NiCoCrAl-Y2O3 粘结 层与 AlTiN 陶瓷层,经测试发现该结构具备优异抗 热震能力。吴雁等^[10]以 YG10 硬质合金作为基体, 通过阴极电弧离子镀方法制得 AlTiN 与 TiAlSiN 涂 层 经硬度测试发现这两种涂层分别达到 28.2 GPa 与 37.83 GPa 加入一定含量的 Si 之后获得了更加 细小的组织晶粒,对 TiAlSiN 涂层断面区域进行观 察发现 形成了致密的结构 同时涂层硬度与耐磨性 也获得明显提升。费加喜等[11]依次对硬质合金与 立式面铣刀实施电弧离子镀处理,使其表面沉积得 到 AlTiN 涂层 经观察发现 此时形成了较为光滑的 涂层组织 几乎没有出现大尺寸颗粒 获得了良好致 密性的涂层截面。将制得的 AlTiN 涂层升温到 600℃进行摩擦磨损测试时 涂层主要发生磨粒与氧 化磨损过程。张权等^[12] 重点测试了电弧离子镀沉 积阶段外部磁场对 AlTiN 涂层组织结构产生的影 响 结果显示设定不同的电磁场电压时 AlTiN 涂层 内的颗粒尺寸、硬度、沉积速率与组织结构也会发生 变化。不过到目前为止还很少有学者针对复合陶瓷 涂层内的微孔结构进行分析。为有效缓解涂层内应 力 防止涂层发生开裂的现象 本研究通过激光熔覆 方法制得 NiCoCr 粘结层 ,之后表征了该涂层的组织 结构与各物相成分并测定了结合性能。

1 实验

1.1 试样制备

本实验以 Ni625 镍基合金作为测试基体,将其 加工成外径为 25 mm 以及厚度为 8 mm 的试样;使 用组成为 AlTiN 的纳米团聚粉末,颗粒尺寸介于 20 ~50 μm 之间;按照 7:1 的质量比加入聚苯乙烯微 球作为造孔剂 将其和 NiCoCr 粉末通过球磨处理达 到均匀混合状态,控制球料比为 6:1,同时设定设备 的旋转速率为 120 r/min,持续球磨处理 4 h。

以功率为 3000 W 的 Trudisk-3004 激光器作为 激光熔覆设备,使用 YC52 型激光头。对经过预处 理的基体表面实施激光熔覆制得 NiCoCr 粘结层,要 求该粘结层的厚度低于 200 μm ,之后再利用铺粉设备纳米 AlTiN 团聚体粉末铺设到粘结层表面 ,对其 实施激光熔覆处理生成陶瓷 AlTiN 涂层 ,表 1 给出 了激光熔覆处理的各项工艺参数。

1.2 性能测试

以 D/max2500 X 射线衍射仪(XRD) 表征原料 粉末与各涂层试样的衍射谱图,分析了各物相结构 的组成;采用 JSM-7100F 扫描电镜(SEM) 表征了 AlTiN 涂层试样的表面微观形貌,并对利用其自带 的能谱仪(EDS)测试了各元素含量。根据 AST-MC633-2001 标准测试涂层结合力,用 RGM-4050 万 能拉伸机测试涂层结合力,拉伸速度为1 mm/min。

表1 激光熔覆工艺参数

Tab. 1 Laser cladding conditions

涂层	功率 /W	扫面速率 /mm/s	光斑直径 /mm	送粉速率 /L/mm	搭接率 /%
NiCoCr	1600	12	6	16	45
AlTiN	1200	12	8	16	45

2 结果与分析

2.1 微观组织

图1给出了激光熔覆 NiCoCr 粘结层的低倍和 高倍 SEM 图像。可以发现,此时形成了尺寸介于6 ~10 μm 之间的圆形微孔,并且呈现均匀分布形态, 同时还可以观察到形成了部分不规则的孔洞结构, 相邻孔洞互相交织,同时在粘结层内形成了许多球 形小颗粒,尺寸介于3~6μm 之间。在降温阶段产 生了烧结颈,受到激光快速升降温以及重力与表面 张力共同作用的情况下,在熔池内形成了许多空心 微球,同时在气体表面出现了金属熔体非均匀形核 的情况。

从图 2 中可以看到分别对激光熔覆 AlTiN/NiCoCr 涂层的截面和表面进行微观结构表征得到图 像。由截面显示,此时形成了致密的基材组织,并未 观察到微裂纹生成,各层组成间形成了结合紧密的 状态,经测试得到,陶瓷层厚度接近146 μm,形成了 200 μm 左右的微孔粘结层。由表面可知,在陶瓷层 内形成了大量无序排列的等轴晶。这是由于进行激 光熔覆处理时,最外部由陶瓷层构成,热量可以经外 部介质或基体本身进行传输^[13],由此获得很低的温 度梯度,发生快速结晶得到等轴晶。采用激光处理 技术可以实现快速升温与降温的过程,从而达到快 <u>50 µт</u>

(a) low power(b) high power图1激光熔覆NiCoCr粘结层的低倍和高倍SEM图像Fig.1SEM images of the laser cladded NiCoCr coatings

图 3 是对 AlTiN 陶瓷涂层进行 XRD 表征的谱 图 ,可以发现 ,此时涂层中主要存在 α -Al₂O₃ ,同时还 有部分 Al₂Ti₅N 与 Rutile-TiN ,受到高能激光作用 后 在陶瓷的局部区域快速产生温度达到 1200℃以 上的熔池 ,原先的亚稳 Al₂O₃ 成分变成了 α -Al₂O₃ 温度相。

2.2 界面成分分析

图 4 给出了激光熔覆 AlTiN/NiCoCr 涂层的界 面 SEM 图像以及线扫描结果。根据图 4 可知 ,Al-TiN 陶瓷层与 NiCoCr 粘结层都没有产生明显的界 面结构 ,有部分陶瓷层中的成分扩散至微孔粘结层 中 ,出现了互融的情况 ,采用激光熔覆工艺制备陶瓷 层时 ,由于液相表面能具有降低趋势 因此液相陶瓷 会不断填充涂层微孔 ,两者形成键联结构 ,有效降低 了界面的空隙比例 ,获得更加致密的界面组织^[14]。

由线扫描结果可以发现元素分布状态,陶瓷相 内含有 Al、N、Ti 三种元素,形成了明显波动的扫描 曲线。这是因为当试样表面受到激光作用后会发生 获得更高强度的陶瓷层。

a-Al₂O₃ Rutile-TiN Al₂Ti₅N

偏析的现象;同时对界面区域进行元素含量测试得 到了不断降低的变化曲线,由此可以推断微孔粘结 层内不存在陶瓷相元素。在微孔粘结层内存在 Co 与 Ni 经测试发现界面区域发生了元素含量快速降 低,由此可以推断陶瓷相中没有掺入微孔粘结层的 元素。以上测试结果显示,元素没有扩散,因此涂层

Fig.4 SEM cross sectional images of the NiCoCr,AlTiN/NiCoCr coatings and and line scans

主要通过机械方式与基体相结合。

2.3 涂层结合性能

表 2 给出了激光熔覆 NiCoCr 涂层和 AlTiN/ NiCoCr 涂层的结合力和残余应力分布。对结合力 进行分析可以发现,NiCoCr 涂层达到了 66.8 MPa 的结合力,同时,试样 AlTiN/NiCoCr 涂层达到 73.5 MPa 的结合力; AlTiN/NiCoCr 涂层获得了比 NiCoCr 涂层更高结合力。产生上述现象的原因是粘结层可 以提高陶瓷层的结合力。对残余应力进行分析可以 发现,NiCoCr 涂层与 AlTiN/NiCoCr 涂层分别达到了 143.8 MPa 与 130.6 MPa 的残余应力。受到激光照 射后,陶瓷涂层发生了快速升降温,同时陶瓷涂层和 金属材料间具有不同的热膨胀系数,在降温过程中 发生体积收缩而导致界面区域形成残余应力;由于 AlTiN/NiCoCr 涂层中含有多孔结构的粘结层,这些 孔洞可以发挥内应力松弛效果,从而降低了 AlTiN/ NiCoCr 涂层的残余应力。

表 2 激光熔覆 NiCoCr 涂层和 AITiN/NiCoCr 涂层的结合 力和残余应力分布

Tab. 2 Interfacial adhesion and residual stress of theNiCoCr and AlTiN/NiCoCr coatings

涂层	结合力/MPa	残余应力/MPa
NiCoCr	66.8	143.8
AlTiN/NiCoCr	73.5	130.6

图 5 是对激光熔覆 NiCoCr 涂层和 AlTiN/NiCoCr 涂层断裂区域进行观察得到的微观图像。可以 发现,试样发生了台阶断裂的情况,形成了凹凸变化 的表面,这是因为陶瓷结构属于脆性材料,表现为脆 性断裂的特点,形成了剪切面与部分微裂纹。Al-TiN/NiCoCr 涂层形成了更加平整的断裂界面,基本 没有出现台阶结构,同时在断裂面区域形成了众多 微孔。因此,断裂主要发生在互融区,呈现韧性断裂 的特征。

3 结论

(1) 激光熔覆 AlTiN/NiCoCr 涂层形成了致密组 织 為层组成间形成了结合紧密的状态 陶瓷层厚度 接近 146 μ m ,形成了 200 μ m 左右的微孔粘结层。 在陶瓷层内形成了大量无序排列的等轴晶 ,获得更 高强度的陶瓷层。涂层中主要存在 α -Al₂O₃ ,还有部 分 Al₂Ti₅N 与 Rutile-TiN。

(2)采用激光熔覆工艺有效降低了界面的空隙 比例,获得更加致密的界面组织。陶瓷相内含有 Al、N、Ti 三种元素,形成了明显波动的扫描曲线;在 微孔粘结层内存在 Co 与 Ni,界面区元素含量快速 降低。

(3) AlTiN/NiCoCr 涂层获得了比 NiCoCr 涂层 更高结合力和更小的残余应力。试样发生了台阶断 裂的情况,形成了凹凸变化的表面。AlTiN/NiCoCr 涂层形成了更加平整的断裂界面,基本没有出现台 阶结构,同时在断裂面区域形成了众多微孔。

参考文献

- [1] AI T T. Microstructure and Mechanical Properties of In– Situ Synthesized Al₂O₃/TiAl Compsites [J]. Chinese Journal of Aeronautics 2008 21(6):559 - 564
- [2] 葛启录,雷廷权,周 玉. Al₂O₃-ZrO₂-SiCW 陶瓷复合 材料的显微结构和力学性能[J]. 航空学报,1992,13 (7):381-387
- [3] LIU Z ,YANG H JIA Y. Heat Protective Properties of Ni– CrAlY/Al₂O₃ Gradient Ceramic Coating Fabricated by Plasma Spraying and Slurry Spraying [J]. Surface & Coat– ings Technology 2017 327(5):1-8
- [4] HAJIALIFINI M ,AMADEH A. Improvement of Wear and Corrosion Resistance of AZ91 Magnesium Alloy by Applying Ni-SiC Nanocomposite Coating Via Pulse Electrodeposition [J]. Transactions of Nonferrous Metals Society of China 2013 23(10): 2914 – 2922
- [5] RONG J ,YANG K ZHUANG Y. Nonisothermal Crystallization Kinetics of Al₂O₃-YAG Amorphous Ceramic Coating Deposited Via Plasma Spraying [J]. Journal of the American Ceramic Society 2018 ,101(7): 2888 – 2900
- [6] MTHISI A ,POPOOLA P I ,ADEBIYI D I ,et al. Laser Cladding of Ti-6Al-4V Alloy with Ti-Al₂O₃ Coating for Biomedical Applications [J]. Materials Science and Engineering 2018 350(1):1-6
- [7] 王东生,田宗军,杨 斌.等离子喷涂常规和纳米 ZrO2-7% Y2O3 热障涂层隔热性能[J]. 热加工工艺, 2012 *A*1(14):141-144
- [8] 田宗军 ,王东生 ,沈理达. TiAl 合金表面激光重熔纳米

陶瓷涂层 [J]. 材料热处理学报 2010 31(2):128-132

- [9] 高雪松,田宗军,沈理达.激光熔覆 Al₂O₃-13% TiO₂陶
 瓷层制备及其抗热震性能[J].中国激光,2012,39
 (2):85-90
- [10] 吴 雁,王 犁 陈 强,等. 阴极电弧制备 AlTiN 和 TiAlSiN 涂层的性能及铣削性能 [J]. 中国陶瓷 2019, 55(07): 29-35
- [11] 费加喜,赵升升,吴正涛,等. AlTiXN/AlTiN(X = Cr, Si) 纳米多层涂层的制备及铣削性能研究[J]. 真空
 科学与技术学报 2018 38(03): 199 207
- [12] 张 权,邹长伟,梁俊才,等.电磁场对电弧离子镀沉 积 AlTiN 涂层的影响[J].真空科学与技术学报, 2016,36(06):666-671
- [13] KAI Y ,JIAN R ,FENG J. Excellent Wear Resistance of Plasma Sprayed Amorphous Al₂ O3-Y₃ Al₅ O₁₂ Ceramic Coating [J]. Surface & Coatings Technology ,2017 ,326 (A):96-102
- [14] RAHMANIFARD R ,ALIPOUR D. Effect of Nanostructured Al₂O-TiO₂ Coating on Performance of Kevlar Fabric [J]. Modares Mechanical Engineering 2018 ,18(1): 131 – 140